

NSK Ball Screws for High-Load Drive

NSKTAC Series of Ball Screw Support Bearings for High-Load Applications NSK Roller Guide RA Series

We have developed easy-to-use ball screws for high-load applications and now offer a wide variety of products suited for high-load drives. These ball screws enable the electric servo drive to operate under the most severe conditions.

Large

Lead mm

Small

Lineup of NSK Ball Screws for High-Load Drive

Best suited design for high-load applications

The best arrangement of the ball recirculation circuits and use of the largest possible ball have significantly contributed to the enhancement of high-load bearing characteristics. (Refer to pages 6 and 7 for details.)

> **HTF-SRD HTF-ASRD**

HTF

Sc Le Pr dia

Peri

Hi m

NS SU

NS

Large

Involute spline (JIS B 1603) Examples:

Small

Straight-sided spline (JIS B 1601)

HTF-SRC

HTF-ASRC

Keyways

Shaft dia. mm

*There are high load capacity options available for the above ball screws for applications where a large load is applied with relatively short strokes.

HTF-SRC Type Enables a maximum speed of 930 mm/s with fine screw leads.	P13 : P16	٦
HTF-SRD Type Enables a maximum speed of 1 600 mm/s with coarse screw leads.	P17 : P20	
Equipped with Grease Retaining A1 Seals Optimized design of A1 seal enables superior grease retaining performance.	P21 : P26	
HTF-ASRC Type HTF-ASR	D Type	
	- Allina	
HTF-SRE Type To speed up large machinery.	P27 : P28	
	÷	
To speed up large machinery. HTF Type Screw diameters of 32 to 200 mm Leads of 10 to 32 mm Provides a wide range of screw	Р28 Р29 : Р38	
To speed up large machinery. HTF Type Screw diameters of 32 to 200 mm Leads of 10 to 32 mm Provides a wide range of screw diameter and lead combinations.	Р28 Р29 : Р38	
To speed up large machinery. HTFF Type Screw diameters of 32 to 200 mm Leads of 10 to 32 mm Provides a wide range of screw diameter and lead combinations. Peripheral products for high-load drive ball screw High-load ball screws for injection	P28 P29 E P38 ws P39	
To speed up large machinery. HTF Type Screw diameters of 32 to 200 mm Leads of 10 to 32 mm Provides a wide range of screw diameter and lead combinations. Peripheral products for high-load drive ball screw High-load ball screws for injection molding machine ejectors NSKTAC series of ball screw	P28 P29 : P38 WS P39 : P40 P41	

Examples of Application

Application	Injection molding machine	Die cast machine	Servo press	Press brake	Punch press	Powder press	Bending machine	Press fitting machine	Elevating machine
HTF Type	0	0	0	0	0	0	0	0	\bigcirc
SRC Type	O	0	O	O	0	O	\bigcirc	O	\bigcirc
SRD Type	O	O			0				\bigcirc
SRE Type	0	O	O	0	0	0	0		\bigcirc

*There are high load capacity options available for applications with large loads with relatively short strokes, such as press fitting machine. Please consult NSK.

Features

NSK high-load drive ball screws have maximized the ball diameter and increased the number of valid load balls for a design that can withstand a high load. They have achieved a high reliability through many different technologies including even load distribution. Technology for high-speed feeding and preserving the work environment have also been added to accommodate the needs of various devices requiring a large load and high reliability, such as budroulio oulindor

nydraulic cylinder re	placement.						
High reliability	In addition to high load design, all series preventing ball competition and helping e technology to meet a high load bearing rec	en nu	t load				
High-speed feeding	Feeding speed has been increased to im Maximum speeds are 930 mm/s with a fine						
High environmental properties	With sophisticated seal technology, grease up is needed in response to ever increasing						
	nows technologies used for each series t g and environmental consideration.	o achi	eve h	igh re	eliabi	lity,	
Ball	screws for high load drive	HTE-SEC	HTF-SRD	HTF-ASRC	HTF-ASRD	HTF-SRE	H T F
	Technology used						
	Design for high load	0	0	0	0	0	0
	Ball retaining piece S1	0	$ \circ$	$ \circ$	$ \circ$	\circ	$ \circ$
High reliability	Ball retaining piece S1 Even load distribution [1] (radial load balance)		0	0	0	0	0
High reliability P5~							-
• •	Even load distribution [1] (radial load balance) Even load distribution [2] (in consideration of	0	0	0	0	0	0
P5~	Even load distribution [1] (radial load balance) Even load distribution [2] (in consideration of axial nut material expansion and contraction)	0	0	0	0	0	0
• •	Even load distribution [1] (radial load balance) Even load distribution [2] (in consideration of axial nut material expansion and contraction) High load capacity option (optional)	0	0 0 0	0 0 0	0	0	0
P5~	Even load distribution [1] (radial load balance) Even load distribution [2] (in consideration of axial nut material expansion and contraction) High load capacity option (optional) High d/n circulation route design	0 0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0 0	0
P5~ High-speed feeding	Even load distribution [1] (radial load balance) Even load distribution [2] (in consideration of axial nut material expansion and contraction) High load capacity option (optional) High d/n circulation route design Ball groove shape for high speed	0 0 0 0	0 0 0	0 0 0 0		0 0 0 0	0

ng piece S1 for ner original NSK

and injection. rse lead.

nd less topping

High reliability

Design for high load

NSK ball screws for high load drive have increased load capacity by maximizing the diameter of balls in relation to the lead, increasing the number of valid load balls and optimizing the shape of ball groove for a design that can withstand high load.

2 **Resin Retaining Piece NSK S1™**

A moment load caused by misalignment of a ball screw can hinder smooth motion of the balls, thus causing ball jamming in the ball recirculation circuits and adversely affecting the durability of the ball screw. By incorporating the resin retaining piece NSK S1[™] between balls, NSK has greatly improved the durability of ball screws under a moment load.

Durability test with continuous high load

Test model: HTF10025-7.5 All load balls (without S1), and with S1

Test conditions:

Load condition: Forward 200 kN. Back 20 kN Stroke: 70 mm, Cycle time: 9 sec Lubrication: Grease Temperature: Normal

Mounting error:

Outer surface of balls

Max. 0.03 mm

All load balls: very good (after 100 000 cycles)

0.3 mm

All load balls: damaged (after 10 000 cycles)

With S1: very good (after 100 000 cycles)

With ball screws that carry large loads, it is important to distribute the load evenly to each ball. NSK high-load drive ball screws have improved reliability with the load distribution technology described below.

Theory of even load distribution 1 (applies to SRC and return tube types)

Ball return tubes are located 180 degrees apart for equal load distribution to the balls.

Minimum difference between upper and lower balls

Load distribution to balls

[Patent pending]

Even load distribution [2]

With ball screws that carry a large load, the deformation of components (axis, nut) cannot be disregarded. Based on the load points adapted for screws and nuts in the illustration below (A) (recommended installation), the influence of contraction and expansion in the screw shaft and nut axial direction is offset and inner nut load is evenly distributed. To make these measures even more effective, axis and the cross section of nut are placed as close to each other as possible in HTF-SRC and HTF models.

Options for high load capacity

Improving load bearing performance considerably

Load limits for high-load drive ball screws are

(1) Allowable axial load (load limit beyond which stress on ball contact surface has extremely adverse effect on fatique life)

(2) Limit axial load (limit load of ball and axial groove contact surface reaching groove shoulder).

Through inner spec optimization, limit axial load can be up to 1.3 times greater than conventional high-load drive ball screws. These are suitable for applications where a large load is applied at relatively short strokes, such as sheet metal presses, press brakes, servo presses, mold presses, etc. Choices are made in consideration of balance between enhanced load bearing and service life. Please consult NSK.

A wide range of variations

Ball screws with this option are compatible with all types of highload drive ball screws, such as HTF-SRC, HTF-SRD and greaseretaining A1 series in terms of size.

High-speed feeding

High d/n circulation route design

By smoothly picking up balls in the direction tangent to the screw groove, the impact of the balls colliding on other components will be reduced. d/n values (shaft diameter x number of rotations) for speed of circulation components is more than twice as fast as the conventional tube recirculation system.

Ball groove shape for high speed

While rotating at a high speed, the ball collides with the axis at a high speed. With optimal-design ball grooves, pressure on the ball groove surface is minimized during ball collision, preventing shaft damage.

To achieve higher feeding, coarse lead setting is available.(for example, shaft diameter 50 mm for a lead of 40 mm). This, along with high d/n values, enables a high speed feeding.

[Patent pending]

[Patent pending]

High environmental properties

Grease retaining A1 seal

[Patent pending]

Greatly improved grease retaining performance

Thanks to the special ball groove profile of the screw shaft together with the grease retaining A1 seal, the grease retaining characteristics have greatly improved compared with those of existing plastic seals.

With conventional labyrinth seals

With grease retaining A1 seals

Suppresses grease scattering and preserves a clean environment

Use of the A1 seal greatly suppresses grease scattering, showing a significant improvement over the use of existing plastic seals. The A1 seal simplifies the design of your cover, helping to preserve a clean and healthy environment.

Low friction torgue and low-heat generation

The increase of dynamic torque caused by the A1 seal is very small (30 to 50 Ncm in case of ball screw with 80-mm diameter). This level of increase has practically no impact on the driving torque. The practical temperature rise caused by the A1 seal is merely 2 to 3 deg C higher than that of existing plastic seals.

Construction of ball screw equipped with grease retaining A1 seal

**By opening the discharge holes for running-in after grease supplementation, etc., excess grease is discharged. By removing excess grease, grease splatter in high speed operation is reduced.

By smoothly picking up balls in the screw shaft tangent direction, impact of ball collision on other components can be reduced. Compared to conventional tube type, the noise is reduced by over 6dB (A).

100

NSK 10

Life of Ball Screw

Computational life, which is estimated by calculation, is the flaking life caused by rolling contact fatigue. The fatigue life of a ball screw can be estimated by basic dynamic load rating (Ca).

Basic dynamic load rating (Ca)

Basic dynamic load rating (Ca) is the axial load that allows 90% of a group of the same ball screws to rotate one million times (10⁶ rev) under the same conditions without flaking occurring due to rolling contact fatigue. Basic dynamic load ratings (Ca) are shown in the dimension tables.

How to calculate fatigue life

The fatigue life of a ball screw is obtained by the following formula.

$$L = \left(\frac{Ca}{Fa \cdot fw}\right)^3 \cdot 10^6$$
$$Lt = \frac{L}{60n}$$

 $L \cdot l$ Ls = 10^{6}

- *L*: Rated fatigue life (rev)
- *Lt*: Life in hours (h)
- *Ls*: Life by running distance (km)
- Ca: Basic dynamic load rating (N)
- Fa: Axial load (N)
- *n*: Rotational speed (min⁻¹)
- *l*: Lead (mm)
- f_W : Load factor*

*The load factor is decided by operating conditions. Consult NSK when impact and/or vibrations occur during the operation.

Conditions for attaching ball screws 2

With design aimed at high loads and even inner nut load distribution, NSK high-load drive ball screws have achieved high-load performance. (See page 7)

To make the most of these features, installation according to the illustration below is recommended. The bolt holes of the installation surface in this catalog have been set on an assumption that load is received on the surface of the nut flange.

If there is drag load on the bolt for mounting ball screw, the strength of bolts should be carefully considered. Also make sure to center the ball screw with guides.

3 **Cautions regarding lubrication**

When using ball screws, lubricant needs to be replenished. As time passes, lubricant and its functions deteriorate. Lubricant inside of nuts is gradually discharged by stroke motions. Also, operating environments results in impurities in lubricant. Therefore, lubricant needs to be supplemented regularly.

[If high load is applied, use of load withstanding grease containing extreme pressure additives is recommended.1

As the temperature of ball screws rises during use, the strength of the oil film of the lubricant decreases and there is a risk of inadequate lubrication. Be sure to use them at temperatures below 70 deg C (temperature at nut diameter). Contact NSK to ask about environments and use conditions that can easily become too hot.

Other

For other information on general technology of ball screws, see the section of ball screw technical explanations in the precision product catalog (CAT. No. 3162).

HTF-SRC Type

Specifications

Recirculation system: Equipped with SRC (Smooth Return Coupling)

By smoothly picking up balls in the direction tangent to the screw groove, feeding speed is twice as fast as the conventional tube recirculation system while the noise is half or less.

Allowable d·n value and feed speed

Lead 14 and 16 mm: 160 000 or less Lead 20 and 25 mm: 140 000 or less d·n: Shaft diameter d (mm) × Rotational speed n (min⁻¹)

Allowable feed speed	of combinations of sh	naft diameter and lead	ł	Unit [mm/s]
Lead (mm) Shaft dia. (mm)	14	16	20	25
50	750	860		—
63		680	740	930
80		540	590	730
100			470	590
120			390	490

High-speed performance two times greater than existing products

Accuracy grade

Ct7 of JIS B 1192 (1997) is applicable as the standard accuracy grade.

Axial play

Standard axial play: 0.020 mm or less, or 0.050 mm or less

Optional specs

- High load capacity option to increase limit axial load. See page 7 for details.
- Consult NSK if the number of circuits is to be changed for a higher load capacity or circulation routes are to be placed on a single side.

1) When designing the shaft ends, one end of the screw shaft must have ball groove cut through to the shaft end or the ball groove root diameter must be dr or less (see dimension chart), otherwise the ball nut cannot be installed on the screw shaft 2) Please consult NSK with your special design requirements.

- Please refer to pages 11 and 12 for details on the operating life of the ball screw and instructions on installation and lubrication.
- screw lead.capacity or circulation routes are to be placed on a single side.

• Use temperature: 70 deg C maximum (temperature at nut diameter). Use at or below 60 deg C is recommended.

Noise reduced by 6 dB (A) or more compared with return tube type

• Please consult NSK in the case of a short stroke operation less than or equal to four times the length of the ball

HTF-SRC Type

HTF-SRC Type Specifications

				Effective ball	Nut model a via log via axial log									Allowable							
Model No.	Lead ຢ	Shaft dia. d	Root dia. <i>d</i> ,	turns Turns × Circuits	Nut model	Dynamic C _a	Static C _{0a}	D	А	В	L	м	w	x	U	V	Dh	Q	<i>T</i> ₁	T ₂	Fa max. (kN)
HTF-SRC5014-7.5	14	50	41.6	2.5×3	Ι	264	623	80	114	28	202	10	97	9	54.5	46	111	M6×1	69	42	73.1
HTF-SRC5016-7.5	16	50	39	2.5×3	Ι	383	818	95	129	28	228	10	112	9	66	50	134	Rc1/8	74.5	48	91.1
HTF-SRC6316-7.5	16	63	52	2.5×3	Ι	429	1 050	105	139	28	228	10	122	9	72.5	50	148	Rc1/8	74.5	48	119.7
HTF-SRC6316-10	16	63	52	2.5×4	Π	549	1 410	105	139	28	276	10	122	9	72.5	50	148	Rc1/8	74.5	48	159.6
HTF-SRC6316-10.5	16	63	52	3.5×3	Ι	562	1 450	105	139	28	276	10	122	9	72.5	50	148	Rc1/8	74.5	64	167.6
HTF-SRC6316-14	16	63	52	3.5×4	Π	720	1 930	105	139	28	340	10	122	9	72.5	50	148	Rc1/8	74.5	64	215.0
HTF-SRC8016-10.5	16	80	69	3.5×3	Ι	627	1 870	120	154	32	278	10	137	9	80	60	165	Rc1/8	78.5	64	221.3
HTF-SRC8016-14	16	80	69	3.5×4	Π	802	2 490	120	154	32	342	10	137	9	80	60	165	Rc1/8	78.5	64	295.1
HTF-SRC6320-7.5	20	63	49	2.5×3	Ι	572	1 280	117	157	32	279	12	137	11	80	62	163	Rc1/8	90	60	147.1
HTF-SRC6320-10	20	63	49	2.5×4	Π	732	1 710	117	157	32	339	12	137	11	80	62	163	Rc1/8	90	60	196.1
HTF-SRC8020-10.5	20	80	66	3.5×3	Ι	838	2 300	130	170	32	339	12	150	11	88	64	180	Rc1/8	90	80	267.4
HTF-SRC10020-10.5	20	100	86	3.5×3	Ι	936	2 910	145	185	32	339	12	165	11	97	78	199	Rc1/8	90	80	345.9
HTF-SRC10020-14	20	100	86	3.5×4	Π	1 200	3 890	145	185	32	419	12	165	11	97	78	199	Rc1/8	90	80	461.2
HTF-SRC12020-7.5	20	120	106	2.5×3	Ι	776	2 550	173	213	40	287	12	193	11	109.5	88	229	Rc1/8	98	60	304.6
HTF-SRC12020-10	20	120	106	2.5×4	Π	994	3 400	173	213	40	347	12	193	11	109.5	88	229	Rc1/8	98	60	406.1
HTF-SRC6325-10.5	25	63	49	3.5×3	Ι	750	1 770	117	157	32	405	12	137	11	81.5	61	167	Rc1/8	101.75	100	170.0
HTF-SRC8025-7.5	25	80	63	2.5×3	Ι	790	1 960	145	185	40	347	17	165	11	99.5	73	202	Rc1/8	111.75	75	221.1
HTF-SRC10025-10.5	25	100	83	3.5×3	Ι	1 200	3 430	159	199	40	422	17	179	11	108	79	220	Rc1/8	111.75	100	408.4
HTF-SRC10025-14	25	100	83	3.5×4	П	1 540	4 580	159	199	40	522	17	179	11	108	79	220	Rc1/8	111.75	100	544.6
HTF-SRC12025-10.5	25	120	103	3.5×3	Ι	1 300	4 200	173	213	40	421	17	193	11	116	92	238	Rc1/8	111.25	100	498.0
HTF-SRC12025-14	25	120	103	3.5×4	П	1 660	5 600	173	213	40	521	17	193	11	116	92	238	Rc1/8	111.25	100	664.0

Remarks: 1. The ball nut length with no seals is shorter by M than that of a ball nut with seals.

2. Please consult NSK if load exceeds the allowable axial load (Fa max.).

3. The right hand screw is the standard. For specifications on left hand screws, contact NSK.

4. The allowable axial load (Fa max.) is determined in accordance with the mounting conditions of ball screws recommended by NSK.

Refer to page 12 for the mounting conditions. If your mounting conditions differ from those provided, please consult NSK.

HTF-SRD Type

Specifications

Recirculation system: Equipped with end deflector

By smoothly picking up balls in the direction tangent to the screw groove, feeding speed is twice as fast as the conventional tube recirculation system while the noise is half or less.

Allowable d·n value and feed speed

d·n: 120 000 or less d·n: Shaft diameter d (mm) \times Rotational speed (min⁻¹)

Allowable feed sp	eed of combination	ons of shaft diame	ter and lead		Unit [mm/s]
Lead (mm) Shaft dia. (mm)	32	40	50	60	70
50		1 600			
63	1 000	1 250			_
80	—		1 250		
100				1 200	_
120					1 160

optimal for high speed

Noise reduced by 6 dB (A) or **High-lead specification** more compared with return tube type Accuracy grade Axial play Seal

Ct7 of JIS B 1192 (1997) is applicable as the standard accuracy grade. Standard axial play: 0.020 mm or less, or 0.050 mm or less

The ball nut length is shortened by the use of thin seals

Option

High load capacity option to increase limit axial load. See page 7 for details. Please consult NSK if you are considering nut rotation.

1) When designing the shaft ends, one end of the screw shaft must have ball groove cut through to the shaft end or the ball groove root diameter must be dr or less (see dimension chart), otherwise the ball nut cannot be installed on the screw shaft. 2) Please consult NSK with your special design requirements.

• Please refer to pages 11 and 12 for details on the operating life of the ball screw and instructions on installation and lubrication. screw lead.capacity or circulation routes are to be placed on a single side.

• Please consult NSK in the case of a short stroke operation less than or equal to four times the length of the ball

• Use temperature: 70 deg C maximum (temperature at nut diameter). Use at or below 60 deg C is recommended.

HTF-SRD Type

	Local			Basic load	I rating (kN)	_			В	all nut dimensior	າຣ				Allowable axial load
Model No.	Lead ໃ	Shaft dia. d	Root dia. <i>d</i> r	Dynamic C _a	Static C _{0a}	D	А	В	L	н	W	x	Q	T ₁	Fa max. (kN)
HTF-SRD6332-4E	32	63	49	292	590	140	190	32	176	85	165	14	Rc1/8	18	72.6
HTF-SRD5040-6E	40	50	39	243	491	115	165	28	159	72.5	140	14	Rc1/8	16	67.6
HTF-SRD5040-8E	40	50	39	319	679	115	165	28	199	72.5	140	14	Rc1/8	16	92
HTF-SRD6340-6E	40	63	49	363	768	140	200	32	163	90	170	18	Rc1/8	18	106.3
HTF-SRD6340-8E	40	63	49	476	1 060	140	200	32	203	90	170	18	Rc1/8	18	144.7
HTF-SRD8050-6E	50	80	63	502	1 180	175	250	40	194	110	210	22	Rc1/8	18	163.7
HTF-SRD8050-8E	50	80	63	658	1 630	175	250	40	244	110	210	22	Rc1/8	18	224.1
HTF-SRD10060-6E	60	100	83	583	1 490	195	270	40	225	122	235	22	Rc1/8	20	211.5
HTF-SRD10060-8E	60	100	83	765	2 060	195	270	40	285	122	235	22	Rc1/8	20	288
HTF-SRD12070-6E	70	120	103	630	1 810	210	285	50	260	130	250	22	Rc1/8	25	259.4
HTF-SRD12070-8E	70	120	103	826	2 520	210	285	50	330	130	250	22	Rc1/8	25	352

Remarks: 1. Please consult NSK if load exceeds the allowable axial load (Fa max.).

2. The right hand screw is the standard. For specifications on left hand screws, contact NSK.

3. The allowable axial load (Fa max.) is determined in accordance with the mounting conditions of ball screws recommended by NSK.

Refer to page 12 for the mounting conditions. If your mounting conditions differ from those provided, please consult NSK.

22.5°

45

Н

22.5°,

HTF-ASRC Type and **HTF-ASRD** Type **Equipped with Grease Retaining A1 Seal**

Specifications

Equipped with grease retaining A1 seal

The optimum design of the A1 seal (patent applied for and pending) allows superior grease retaining performance.

Recirculation system: Equipped with SRC or end deflector

These ball screws are used with the SRC or the end deflector recirculation system, which pick up balls smoothly in the direction they are moving.

Allowable d-n value and feed speed

Lead 16 mm: 160 000 or less Lead 20 and 25 mm: 140 000 or less Lead 32, 40 and 50 mm: 120 000 or less d·n: Shaft diameter d (mm) × Rotational speed (min⁻¹)

Allowable feed speed of combinations of shaft diameter and lead

Lead (mm)		HTF-ASRC Type			HTF-AS	RD Type	
Shaft dia. (mm)	16	20	25	32	40	50	60
50	860	_	-	—	1 600	_	_
63	680	740	930	1 000	1 250	_	_
80	540	590	730	—	—	1 250	—
100	_	470	590	_	_	_	1 200
120	—	390	490	—	—	_	—

Accuracy grade

Ct7 of JIS B 1192 (1997) is applicable as the standard accuracy grade.

Axial play

Standard axial play: 0.020 mm or less, 0.050 mm or less

Option

Unit [mm/s]

High load capacity option to increase limit axial load. See page 7 for details.

Design Precautions

1) When designing the shaft ends, one end of the screw shaft must have ball groove cut through to the shaft end or the ball groove root diameter must be dr or less (see dimension chart), otherwise the ball nut cannot be installed on the screw shaft.

2) The table below shows the maximum length of screw shaft for the equipment of the A1 seal. 3) Please contact NSK with your special design requirements.

	Unit [mm]
Shaft dia.	Max. shaft length
50	850
63	950
80	1 100
100, 120	1 300

Selection of Ball Screw

- Please refer to pages 11 and 12 for details on the operating life of the ball screw and instructions on installation and lubrication.

Environmental Conditions

• Use temperature: 70 deg C maximum (temperature at nut diameter). Use at or below 60 deg C is recommended.

• Never use in an environment where degreasing solvents are present. Examples: grease-removing organic solvent such as hexane or thinner, white kerosine, rust preventive oil (containing white kerosine)

HTF-ASRC Type and HTF-ASRD Type

• Please consult NSK in the case of a short stroke operation less than or equal to four times the length of the ball screw lead.

HTF-ASRC Type

HTF-ASRC Type Specifications

	Lood	Shaft dia.	Root dia.	Effective ball	Nut																			
Model No.	Lead ℓ	d d	d _r	turns Turns × Circuits	model	Dynamic C _a	Static C _{0a}	D	A	В	L	W	x	U	V	Dh	Q	<i>T</i> ₁	T ₂	S	E	S ₁	S ₂	Fa max. (kN)
HTF-ASRC5016-7.5	16	50	39	2.5×3	Ι	383	818	95	129	28	234	112	9	66	50	134	Rc1/8	77.5	48	Rc1/4	15.3	38	167	91.1
HTF-ASRC6316-7.5	16	63	52	2.5×3	Ι	429	1 050	105	139	28	234	122	9	72.5	50	148	Rc1/8	77.5	48	Rc1/4	15.3	38	167	119.7
HTF-ASRC6316-10	16	63	52	2.5×4	П	549	1 410	105	139	28	282	122	9	72.5	50	148	Rc1/8	77.5	48	Rc1/4	15.3	38	215	159.6
HTF-ASRC6316-10.5	16	63	52	3.5×3	Ι	562	1 450	105	139	28	282	122	9	72.5	50	148	Rc1/8	77.5	64	Rc1/4	11.8	38	215	167.6
HTF-ASRC6316-14	16	63	52	3.5×4	П	720	1 930	105	139	28	346	122	9	72.5	50	148	Rc1/8	77.5	64	Rc1/4	11.8	38	279	215.0
HTF-ASRC8016-10.5	16	80	69	3.5×3	Ι	627	1 870	120	154	32	284	137	9	80	60	165	Rc1/8	81.5	64	Rc1/4	11.3	42	215	221.3
HTF-ASRC8016-14	16	80	69	3.5×4	П	802	2 490	120	154	32	348	137	9	80	60	165	Rc1/8	81.5	64	Rc1/4	11.3	42	279	295.1
HTF-ASRC6320-7.5	20	63	49	2.5×3	Ι	572	1 280	117	157	32	279	137	11	80	62	163	Rc1/8	90	60	Rc1/4	18.5	43	204	147.1
HTF-ASRC6320-10	20	63	49	2.5×4	П	732	1 710	117	157	32	339	137	11	80	62	163	Rc1/8	90	60	Rc1/4	18.5	43	264	196.1
HTF-ASRC8020-10.5	20	80	66	3.5×3	Ι	838	2 300	130	170	32	339	150	11	88	64	180	Rc1/8	90	80	Rc1/4	15	43	264	267.4
HTF-ASRC10020-10.5	20	100	86	3.5×3	Ι	936	2 910	145	185	32	339	165	11	97	78	199	Rc1/8	90	80	Rc1/4	13	43	264	345.9
HTF-ASRC10020-14	20	100	86	3.5×4	Π	1 200	3 890	145	185	32	419	165	11	97	78	199	Rc1/8	90	80	Rc1/4	13	43	344	461.2
HTF-ASRC12020-7.5	20	120	106	2.5×3	Ι	776	2 550	173	213	40	287	193	11	109.5	88	229	Rc1/8	98	60	Rc1/4	20	51	204	304.6
HTF-ASRC12020-10	20	120	106	2.5×4	Π	994	3 400	173	213	40	347	193	11	109.5	88	229	Rc1/8	98	60	Rc1/4	20	51	264	406.1
HTF-ASRC6325-10.5	25	63	49	3.5×3	Ι	750	1 770	117	157	32	405	137	11	81.5	61	167	Rc1/8	101.75	100	Rc1/4	13.5	47	323	170.0
HTF-ASRC8025-7.5	25	80	63	2.5×3	Ι	790	1 960	145	185	40	347	165	11	99.5	73	202	Rc1/8	111.75	75	Rc1/4	19	55	251	221.1
HTF-ASRC10025-10.5	25	100	83	3.5×3	Ι	1 200	3 430	159	199	40	422	179	11	108	79	220	Rc1/8	111.75	100	Rc1/4	14	55	326	408.4
HTF-ASRC10025-14	25	100	83	3.5×4	Π	1 540	4 580	159	199	40	522	179	11	108	79	220	Rc1/8	111.75	100	Rc1/4	14	55	426	544.6
HTF-ASRC12025-10.5	25	120	103	3.5×3	Ι	1 300	4 200	173	213	40	421	193	11	116	92	238	Rc1/8	111.25	100	Rc1/4	11	55	325	498.0
HTF-ASRC12025-14	25	120	103	3.5×4	Π	1 660	5 600	173	213	40	521	193	11	116	92	238	Rc1/8	111.25	100	Rc1/4	11	55	425	664.0

Remarks: 1. Drain holes shall be plugged for shipping.

2. The right hand screw is the standard. For specifications on left hand screws, contact NSK.

3. The allowable axial load (Fa max.) is determined in accordance with the mounting conditions of ball screws recommended by NSK.

Refer to page 12 for the mounting conditions. If your mounting conditions differ from those provided, please consult NSK.

HTF-ASRD Type

HTF-ASRD Type Specifications

	Lead	Shaft dia.	Root dia.	Basic load	rating (kN)		axia											Allowable axial load	
Model No.	l	d	d _r	Dynamic C _a	Static C _{0a}	D	А	В	L	н	W	x	Q	<i>T</i> ₁	T ₂	S	S ₁	S ₂	Fa max. (kN)
HTF-ASRD6332-4E	32	63	49	292	590	140	190	36	186	85	165	14	Rc1/8	85.1	—	Rc1/4	23.5	138	72.6
HTF-ASRD5040-6E	40	50	39	243	491	115	165	34	172	72.5	140	14	Rc1/8	75.7	20	Rc1/4	24	123.5	67.6
HTF-ASRD5040-8E	40	50	39	319	679	115	165	34	212	72.5	140	14	Rc1/8	95.7	20	Rc1/4	24	163.5	92.0
HTF-ASRD6340-6E	40	63	49	363	768	140	200	36	176	90	170	18	Rc1/8	77.6	20	Rc1/4	24	127.5	106.3
HTF-ASRD6340-8E	40	63	49	476	1 060	140	200	36	216	90	170	18	Rc1/8	97.6	20	Rc1/4	24	167.5	144.7
HTF-ASRD8050-6E	50	80	63	502	1 180	175	250	40	208	110	210	22	Rc1/8	91.1	25	Rc1/4	26	156	163.7
HTF-ASRD8050-8E	50	80	63	658	1 630	175	250	40	258	110	210	22	Rc1/8	116.1	25	Rc1/4	26	206	224.1
HTF-ASRD10060-6E	60	100	83	583	1 490	195	270	40	239	122	235	22	Rc1/8	104.5	30	Rc1/4	26	187	211.5
HTF-ASRD10060-8E	60	100	83	765	2 060	195	270	40	299	122	235	22	Rc1/8	134.5	30	Rc1/4	26	247	288

Remarks: 1. Drain holes shall be plugged for shipping.

2. The right hand screw is the standard. For specifications on left hand screws, contact NSK.

3. The allowable axial load (Fa max.) is determined in accordance with the mounting conditions of ball screws recommended by NSK.

Refer to page 12 for the mounting conditions. If your mounting conditions differ from those provided, please consult NSK.

HTF-SRE Type

Specifications

Recirculation system: picking up balls in the direction tangent to deflector

By smoothly picking up balls in the direction of the screw groove tangent, feeding speed is 1.4 to 2 times as fast as the conventional tube recirculation system.

Allowable d-n value

Allowable d-n value 100,000 d-n value: shaft diameter d [mm] × rotations n [min⁻¹]

A	Ilowable feed speed of	combinations of s	shaft diameter and lead			Unit [mm]
	Lead Shaft dia.	25 3	30 71	0	80	Allowable rotating speed [min ⁻¹]
	140					714
	160					625
	200					500

Please consult NSK about ball nut shape and dimensions.

• A double-spread screw can be used for leads of 50mm and more.

High-speed performance two times greater than existing products

Accuracy grade

Ct7 of JIS B 1192 (1997) is applicable as the standard accuracy grade.

Axial play

Standard axial play: 0.050 mm or less

Option

- High load capacity option to increase limit axial load. See page 7 for details.

1) When designing the shaft ends, one end of the screw shaft must have ball groove cut through to the shaft end or the ball groove root diameter must be dr or less (see dimension chart), otherwise the ball nut cannot be installed on the screw shaft. 2) Please consult NSK with your special design requirements

- Please refer to pages 11 and 12 for details on the operating life of the ball screw and instructions on installation and lubrication.
- Please consult NSK in the case of a short stroke operation less than or equal to four times the length of the ball screw lead.capacity or circulation routes are to be placed on a single side.

•Use temperature: 70 deg C maximum (temperature at nut diameter).

• Consult NSK if the number of circuits is to be changed for a higher load capacity or circulation routes are to be

Specifications

Allowable d·n value and feed speed

Lead	20 mm or less	25 mm	30 to 32 mm
Standard	≦70 000	≦70 000	≦50 000
High-speed	≦100 000		

| Init [mm/s]

d·n: Shaft diameter d (mm) × Rotational speed (min⁻¹)

For even faster specs, HTF-SRC is recommended (See pages 13–16 for details).

Allowable feed speed of combinations of shaft diameter and lead

Shaft dia.				Lead	[mm]			
[mm]	10	12	14	16	20	25	30	32
32	520							
36	460	550						
40	410	500						
45	370	440						
50	330	400						
55	300	360	420	480				
63		310	370		520			
80			290	330	410			
100				260	330	290		
120				220	270	240		
140					230	200	170	190
160						180	150	160
200							120	130

Leads with a diameter of 20 mm or less have high-speed feeding specs.

Accuracy grade

Ct7 of JIS B 1192 (1997) is applicable as the standard accuracy grade.

Axial play

Standard axial play: 0.020 mm or less, or 0.050 mm or less

Optional specs

- High load capacity option to increase limit axial load. See page 7 for details.
- Consult NSK if the number of circuits is to be changed for a higher load capacity or circulation routes are to be placed on a single side.

Design Precautions

1) When designing the shaft ends, one end of the screw shaft must have a ball groove cut through to the shaft end or the ball groove root diameter must be dr or less (see dimension chart), otherwise the ball nut cannot be installed on the screw shaft. 2) Please consult NSK with your special design requirements.

- Please refer to pages 11 and 12 for details on the operating life of the ball screw and instructions on installation and lubrication.
- Please consult NSK in the case of a short stroke operation less than or equal to four times the length of the ball screw lead.

• Use temperature: 70 deg C maximum (temperature at nut diameter)

Outline drawing

HTF Type Specifications

			Destalia	Effective ball		Basic load	rating (kN)						Ball nı	ut dimension	S						Allowable axial load
Model No.	Lead	Shaft dia.	Root dia. <i>d</i> _r	turns Turns × Circuits	Nut model	Dynamic C _a	Static C _{0a}	D	A	В	L	М	w	x	U	V	Dh	Q	T ₁	T ₂	Fa max. (kN)
HTF3210-5	10	32	25.6	2.5×2	Ι	88.7	169	58	92	18	103	7	75	9	40.5	42	82	M6×1	36.5	30	20.3
HTF3610-5	10	36	29.6	2.5×2	I	96.1	191	62	96	18	103	7	79	9	43	45	87	M6×1	36.5	30	23.4
HTF4010-7.5	10	40	33.6	2.5×3	П	149	344	66	100	18	143	7	83	9	45	48	91	M6×1	46.5	30	39.6
HTF4510-7.5	10	45	38.6	2.5×3	П	158	386	70	104	18	143	7	87	9	47	52	95	M6×1	46.5	30	45.3
HTF4510-10	10	45	38.6	2.5×4	Ш	203	514	70	104	18	173	7	87	9	47	52	95	M6×1	46.5	30	60.4
HTF5010-7.5	10	50	43.6	2.5×3	П	166	435	75	109	18	143	7	92	9	49	57	99	M6×1	46.5	30	51.0
HTF5010-10	10	50	43.6	2.5×4	Ш	213	580	75	109	18	173	7	92	9	49	57	99	M6×1	46.5	30	68.0
HTF5510-7.5	10	55	48.6	2.5×3	П	173	477	80	114	18	143	7	97	9	51.5	62	104	M6×1	46.5	30	55.7
HTF5510-10	10	55	48.6	2.5×4	Ш	222	636	80	114	18	173	7	97	9	51.5	62	104	M6×1	46.5	30	74.2
HTF3612-5	12	36	29	2.5×2	I	112	228	66	100	22	123	8	83	9	46.5	46	94	M6×1	44	36	28.3
HTF4012-7.5	12	40	33	2.5×3	П	184	422	70	104	22	171	8	87	9	47.5	50	96	M6×1	56	36	48.0
HTF4512-7.5	12	45	38	2.5×3	П	195	473	72	106	22	171	8	89	9	49.5	54	100	M6×1	56	36	55.0
HTF5012-7.5	12	50	43	2.5×3	П	205	525	77	111	22	171	8	94	9	52	59	105	M6×1	56	36	62.0
HTF5012-10	12	50	43	2.5×4	Ш	263	700	77	111	22	207	8	94	9	52	59	105	M6×1	56	36	82.7
HTF5512-7.5	12	55	48	2.5×3	П	214	586	82	116	22	171	8	99	9	54.5	63	110	M6×1	56	36	69.1
HTF5512-10	12	55	48	2.5×4	Ш	274	781	82	116	22	207	8	99	9	54.5	63	110	M6×1	56	36	92.1
HTF6312-7.5	12	63	56	2.5×3	П	227	668	92	126	22	171	8	109	9	58.5	70	118	M6×1	56	36	80.3
HTF6312-10	12	63	56	2.5×4	Ш	290	891	92	126	22	207	8	109	9	58.5	70	118	M6×1	56	36	107.1

Remarks: 1. The ball nut length with no seals is shorter by M than that of a ball nut with seals.

2. Please consult NSK if load exceeds the allowable axial load (Fa max.).

3. The allowable axial load (Fa max.) is determined in accordance with the mounting conditions of ball screws recommended by NSK.

Refer to page 12 for the mounting conditions. If your mounting conditions differ from those provided, please consult NSK.

HTF Type Specifications

				Effective ball		Basic load	rating (kN)						Ball ni	ut dimension	S						Allowable
Model No.	Lead l	Shaft dia.	Root dia.	turns Turns × Circuits	Nut model	Dynamic C _a	Static C _{0a}	D	A	В	L	М	W	x	U	V	Dh	Q	τ,	T ₂	axial load Fa max. (kN)
HTF5514-7.5	14	55	46.7	2.5×3	П	270	696	85	119	28	200	10	102	9	57.5	65	116	M6×1	66.5	42	81.2
HTF6314-7.5	14	63	54.7	2.5×3	П	291	800	94	128	28	200	10	111	9	61.5	72	124	M6×1	66.5	42	93.5
HTF6314-10	14	63	54.7	2.5×4	Ш	373	1 070	94	128	28	242	10	111	9	61.5	72	124	M6×1	66.5	42	124.7
HTF8014-7.5	14	80	71.7	2.5×3	П	327	1 020	116	150	28	200	10	133	9	72	87	146	M6×1	66.5	42	121.9
HTF8014-10	14	80	71.7	2.5×4	Ш	418	1 360	116	150	28	242	10	133	9	72	87	146	M6×1	66.5	42	162.5
HTF5516-7.5	16	55	44	2.5×3	П	399	922	99	133	28	223	10	116	9	70	70	141	Rc1/8	73	48	101.9
HTF8016-7.5	16	80	69	2.5×3	П	478	1 340	120	154	32	227	10	137	9	80	92	161	Rc1/8	77	48	159.0
HTF8016-10	16	80	69	2.5×4	II	612	1 790	120	154	32	275	10	137	9	80	92	161	Rc1/8	77	48	212.0
HTF10016-7.5	16	100	89	2.5×3	П	529	1 710	145	185	32	227	10	165	11	91	109	184	Rc1/8	77	48	202.3
HTF10016-10	16	100	89	2.5×4	I	677	2 280	145	185	32	275	10	165	11	91	109	184	Rc1/8	77	48	269.8
HTF12016-7.5	16	120	109	2.5×3	П	572	2 050	173	213	32	227	10	193	11	104	126	210	Rc1/8	77	48	248.9
HTF12016-10	16	120	109	2.5×4	Ш	732	2 730	173	213	32	275	10	193	11	104	126	210	Rc1/8	77	48	331.9

Remarks: 1. The ball nut length with no seals is shorter by M than that of a ball nut with seals.

2. Please consult NSK if load exceeds the allowable axial load (Fa max.).

3. The allowable axial load (Fa max.) is determined in accordance with the mounting conditions of ball screws recommended by NSK.

Refer to page 12 for the mounting conditions. If your mounting conditions differ from those provided, please consult NSK.

HTF Type

HTF Type Specifications

	1		Destalia	Effective ball		Basic load	rating (kN)						Ball n	ut dimension	S						Allowable axial load
Model No.	Lead ℓ	Shaft dia.	Root dia.	turns Turns × Circuits	Nut model	Dynamic C _a	Static C _{0a}	D	A	В	L	М	W	x	U	V	Dh	Q	T ₁	T ₂	Fa max. (kN)
HTF6320-10.5	20	63	49	3.5×3	П	749	1 810	117	157	32	333	12	137	11	83.5	81	168	Rc1/8	88	80	205.4
HTF8020-7.5	20	80	66	2.5×3	П	639	1 690	130	170	32	273	12	150	11	89.5	96	181	Rc1/8	88	60	192.6
HTF8020-10	20	80	66	2.5×4	Ш	818	2 250	130	170	32	333	12	150	11	89.5	96	181	Rc1/8	88	60	256.8
HTF10020-7.5	20	100	86	2.5×3	П	713	2 140	145	185	32	273	12	165	11	97.5	114	196	Rc1/8	88	60	248.6
HTF10020-10	20	100	86	2.5×4	Ш	914	2 850	145	185	32	333	12	165	11	97.5	114	196	Rc1/8	88	60	331.5
HTF12020-10.5	20	120	106	3.5×3	П	1 020	3 530	173	213	40	341	12	193	11	111	131	223	Rc1/8	96	80	424.7
HTF12020-14	20	120	106	3.5×4	Ш	1 300	4 710	173	213	40	421	12	193	11	111	131	223	Rc1/8	96	80	566.2
HTF14020-7.5	20	140	126	2.5×3	П	829	3 000	204	250	40	281	12	226	14	122.5	148	248	Rc1/8	96	60	360.9
HTF14020-10	20	140	126	2.5×4	Ш	1 060	4 000	204	250	40	341	12	226	14	122.5	148	248	Rc1/8	96	60	481.2
HTF10025-7.5	25	100	84	2.5×3	П	917	2 550	159	199	40	338	17	179	11	108.5	118	219	Rc1/8	109.25	75	293.2
HTF10025-10	25	100	84	2.5×4	Ш	1 170	3 400	159	199	40	413	17	179	11	108.5	118	219	Rc1/8	109.25	75	391.0
HTF12025-7.5	25	120	104	2.5×3	П	990	3 080	173	213	40	338	17	193	11	116	135	233	Rc1/8	109.25	75	358.2
HTF12025-10	25	120	104	2.5×4	Ш	1 270	4 110	173	213	40	413	17	193	11	116	135	223	Rc1/8	109.25	75	477.6
HTF14025-7.5	25	140	124	2.5×3	П	1 050	3 610	204	250	40	338	17	226	14	127.5	153	258	Rc1/8	109.25	75	423.1
HTF14025-10	25	140	124	2.5×4	Ш	1 350	4 810	204	250	40	413	17	226	14	127.5	153	258	Rc1/8	109.25	75	564.1
HTF14025-10.5	25	140	124	3.5×3	П	1 380	4 910	204	250	40	413	17	226	14	127.5	153	258	Rc1/8	109.25	100	595.2
HTF14025-14	25	140	124	3.5×4	Ш	1 770	6 540	204	250	40	513	17	226	14	127.5	153	258	Rc1/8	109.25	100	793.6
HTF16025-7.5	25	160	144	2.5×3	П	1 140	4 140	234	280	40	338	17	256	14	138	173	279	Rc1/8	109.25	75	495.3
HTF16025-10	25	160	144	2.5×4	I	1 450	5 520	234	280	40	413	17	256	14	138	173	279	Rc1/8	109.25	75	660.4

Remarks: 1. The ball nut length with no seals is shorter by M than that of a ball nut with seals.

2. Please consult NSK if load exceeds the allowable axial load (Fa max.).

3. The allowable axial load (Fa max.) is determined in accordance with the mounting conditions of ball screws recommended by NSK.

Refer to page 12 for the mounting conditions. If your mounting conditions differ from those provided, please consult NSK.

HTF Type

HTF Type Specifications

	Laga	0	Destalia	Effective ball		Basic load	rating (kN)						Ball nu	ut dimension	s						Allowable axial load
Model No.	Lead ℓ	Shaft dia.	Root dia.	turns Turns × Circuits	Nut model	Dynamic C _a	Static C _{0a}	D	А	В	L	М	W	x	U	V	Dh	Q	<i>T</i> ₁	T ₂	Fa max. (kN)
HTF14030-7.5	30	140	121	2.5×3	П	1 310	4 110	222	282	50	411	22	252	18	139	160	281	Rc1/8	134.5	90	487.1
HTF14030-10	30	140	121	2.5×4	Ш	1 670	5 490	222	282	50	501	22	252	18	139	160	281	Rc1/8	134.5	90	649.5
HTF14030-10.5	30	140	121	3.5×3	П	1 710	5 710	222	282	50	501	22	252	18	139	160	281	Rc1/8	134.5	120	678.2
HTF16030-7.5	30	160	141	2.5×3	П	1 400	4 760	234	294	50	411	22	264	18	148	177	299	Rc1/8	134.5	90	564.3
HTF16030-10	30	160	141	2.5×4	Ш	1 790	6 340	234	294	50	501	22	264	18	148	177	299	Rc1/8	134.5	90	752.4
HTF16030-10.5	30	160	141	3.5×3	П	1 830	6 520	234	294	50	501	22	264	18	148	177	299	Rc1/8	134.5	120	788.1
HTF20030-7.5	30	200	181	2.5×3	П	1 550	5 960	290	350	50	411	22	320	18	178	212	359	Rc1/8	134.5	90	718.8
HTF20030-10	30	200	181	2.5×4	Ш	1 980	7 950	290	350	50	501	22	320	18	178	212	359	Rc1/8	134.5	90	958.4
HTF14032-7.5	32	140	118	2.5×3	П	1 590	4 740	222	296	70	465	22	259	22	148	163	299	Rc1/8	166.5	96	549.3
HTF14032-10	32	140	118	2.5×4	Ш	2 040	6 320	222	296	70	561	22	259	22	148	163	299	Rc1/8	166.5	96	732.5
HTF14032-10.5	32	140	118	3.5×3	П	2 080	6 420	222	296	70	561	22	259	22	148	163	299	Rc1/8	166.5	128	756.9
HTF16032-7.5	32	160	138	2.5×3	П	1 660	5 370	234	308	70	465	22	271	22	152	181	307	Rc1/8	166.5	96	636.0
HTF16032-10	32	160	138	2.5×4	Ш	2 130	7 160	234	308	70	561	22	271	22	152	181	307	Rc1/8	166.5	96	848.1
HTF16032-10.5	32	160	138	3.5×3	П	2 180	7 460	234	308	70	561	22	271	22	152	181	307	Rc1/8	166.5	128	885.5
HTF20032-7.5	32	200	178	2.5×3	П	1 840	6 840	290	364	70	465	22	327	22	182	215	367	Rc1/8	166.5	96	809.4
HTF20032-10	32	200	178	2.5×4	Ш	2 360	9 120	290	364	70	561	22	327	22	182	215	367	Rc1/8	166.5	96	1 079.2

Remarks: 1. The ball nut length with no seals is shorter by M than that of a ball nut with seals.

2. Please consult NSK if load exceeds the allowable axial load (Fa max.).

3. The allowable axial load (Fa max.) is determined in accordance with the mounting conditions of ball screws recommended by NSK. Refer to page 12 for the mounting conditions. If your mounting conditions differ from those provided, please consult NSK. HTF Type

High-load ball screws for injection molding machine ejectors

Ball screws exclusively designed for

ejector mechanism contribute to the compact design of the device.

More compact, high-load volume

Compared with conventional ball screws (generally used with ejectors), these have achieved a higher load capacity. This means smaller ball screws, contributing to the compact design of the device.

Grease splatter reduction

An exclusive design for seal and ball groove has reduced grease leakage and splattering.

Specifications

Accuracy grade

Ct7 of JIS B 1192 (1197) is applicable as the standard accuracy grade.

Axial play

Standard axial play: 0.050 mm or less

Optional specs

The nut shape can be adapted for tube push-out specs. Please consult NSK.

Design Precautions

When designing the shaft ends, one end of the screw shaft must have ball groove cut through to the shaft end or the ball groove root diameter must be dr or less (see dimension chart), otherwise the ball nut cannot be installed on the screw shaft.

Outline view

Dimension chart

		Shaft	Root	Effective ball	Basic load	rating[kN]				Ball nut d	imensions			
Model No.	Lead ℓ	dia. d	dia. <i>d</i> r	turns × Circuits	Dynamic C _a	Static C_{Da}	D	А	В	L	w	X	Q	т
3210-5	10	32	26.4	2.5×2	49.6	118	74	108	15	98	90	9	M6X1	9
3610-5	10	36	30.4	2.5×2	52.7	134	75	120	18	100	98	11	M6X1	9
4010-5	10	40	34.4	2.5×2	55.4	149	82	124	18	100	102	11	M6X1	9
4012-5	12	40	34.1	2.5×2	65.2	169	86	128	18	115	106	11	M6X1	9

Note: All are right-hand screws.

NSKTAC Series of Ball Screw Support Bearings for High-Load Applications

Standard Series and Special Bore Diameter Series of Ball Screw Support Bearings for High-Load Applications

NSKHPS[™] Angular Contact Thrust Ball Bearings of Ball Screw Support Bearings for High-Load Drive Applications

High-capacity bearings used for supporting ball screws operating under high loads typically adopt largediameter steel balls in order to ensure sufficient high capacity and to reduce the number of rows of combinations. With the development and commercialization of the special bore diameter series, which has the same load rating as that of the standard series but with a smaller bore diameter, users can maintain equivalent high-capacity performance with a smaller diameter of screw shaft end without changing the number of rows. Please refer to pages 43 and 44 for applicable bearing tables.

Extended bearing life and higher axial-load capacity

- Limiting axial load has increased by 1.5 times compared with that of conventional bearings.
- Bearing life has increased by 1.3 times compared with that of conventional bearings.

Special bore diameter series facilitates downscaling of screw shaft end

Easy handling by means of universal matching

Extended bearing life and higher axial-load capacity

Longer bearing life and higher axial load capacity have been achieved by optimization of the bearing's internal design, thus enabling the reduction in number of combined rows.

Axial load capacity has increased by 1.5 times compared with that of conventional bearings.

The DBD arrangement can be used instead of a DBT arrangement.

Special bore diameter series facilitates downscaling of screw shaft end

The special bore diameter series is designed with an outer ring outside diameter and width that are the same as those of the standard series, but with a bore diameter that is smaller. Therefore, the dimension of the shaft end of the screw can be shortened while maintaining the same basic load rating.

Formulation of Bearing Numbers

Standard series

Example: 40 TAC 03 D	T85 SU M PN5D
Bearing bore diameter	Accuracy symbol
Bearing type symbol	Preload symbol
Dimension symbol	Arrangement symbol
Internal design symbol	Cage symbol

40	Bearing bore diameter	Bore diameter (mm)
TAC	Bearing type symbol	Angular contact thrust ball bearing
03	Dimension symbols	02:02 series; 03:03 series
D	Internal design symbol	Contact angle 55 °
T85	Cage symbol	T85: Polyamide resin cage
SU	Arrangement symbol	SU: Universal matching for single row
М	Preload symbol	M:Standard preload
PN5D	Accuracy symbol	PN5D: Standard accuracy (ISO class 5 equivalent)

Example: Reduced number of combined rows

Example: mounting of special bore diameter series

Special bore diameter series Example: TAC 45 - 3 T85 SU M PN5D Bearing type symbol Accuracy symbo Bearing bore diameter Preload symbol Internal design symbol Arrangement symbol Cage symbol Angular contact thrust ball bearing TAC Bearing type symbol 45 Bore diameter (mm Bearing bore diameter 3 nternal design symbo Contact angle 55 **T85** T85: Polvamide resin cage Cage symbol SU SU: Universal matching for single row Arrangement symbol Μ Preload symbol M: Standard preload PN5D PN5D: Standard accuracy (ISO class 5 equivalent) Accuracy symbol

NSKTAC Series of Ball Screw Support Bearings for High-Load Applications

Dynamic equivalent load

Angular contact thrust ball bearings for equipment such as electric injection molding machines are subjected to extremely large axial loads (F_a) in comparison to radial loads (F_r). Therefore, the dynamic equivalent load P of the support bearing is obtained by the following formula regardless of the number of rows: P is 0.81 $F_{\rm r} + F_{\rm a}$

Multi-row combination calculations

These have been calculated by multiplying the coefficients in the right table for preload coefficient, axial rigidity and starting torque.

Bearing configuration	2 ro	ows		3 rows		4 ro	ows	5 rows
	DFD	DFF	DFT	DFFD	DFFF	DFTD	DFTT	DFFT
	ØØØ	0000	0000	00000	000000	00000	000000	000000
Preload coefficient	1.36	2.00	1.57	2.42	3.00	1.72	2.72	1.83
Axial rigidity	1.49	2.00	1.89	2.51	3.00	2.24	2.97	2.57
Starting torque	1.35	2.00	1.55	2.41	3.00	1.68	2.71	1.77

Standard series

Bearing		Bound	lary dime (mm)	nsions			Dimen (mi			Recommended amount of prepacked	Contact	Limiting speed (min ⁻¹)	Mass	Preload ⁽²⁾ (DB and DF Arrange-	Axial rigity ⁽²⁾ (DB and DF Arrange-	Starting torque ⁽³⁾ (DB and DF				rating C _a I staining F		r	Limitir number of	ng axial lo Frows su		a
numbers	d	D	В	<i>r</i> (min)	r ₁ (min)	d ₁	d ₂	D ₁	D ₂	grease (cc)	angle	Grease	(kg)	ment (N)	ment (N/µm)	Arrangement (N•m)	1 row (kN)	2 rows (kN)	3 rows (kN)	4 rows (kN)	5 rows (kN)	1 row (kN)	2 rows (kN)	3 rows (kN)	4 rows (kN)	5 rows (kN)
15TAC02D	15	35	11	0.6	0.3	19.1	24.5	26	31.9	1	55	12 000	0.047	400	290	0.017	21	34	45	55.5	64.5	18.6	37.5	56	74.5	93
20TAC03D	20	52	15	1.1	0.6	27.2	35.3	37.5	46.1	2.7	55	8 300	0.155	830	430	0.026	42.5	69.5	92	113	132	38.5	77	116	154	193
25TAC02D	25	52	15	1	0.6	30.8	38.1	39.6	47.3	3	55	7 700	0.137	690	430	0.036	37	60	79.5	97.5	114	36	72.5	109	145	181
40TAC03D	40	90	23	1.5	1	50.4	64.2	67.1	81.7	14	55	4 600	0.659	2 500	780	0.26	113	184	244	299	350	118	235	355	470	590
45TAC03D	45	100	25	1.5	1	56.5	71.7	74.7	90.8	18	55	4 100	0.877	2 800	830	0.31	133	216	287	350	410	142	283	425	565	710
50TAC03D	50	110	27	2	1	62	79.1	82.4	100.6	25	55	3 700	1.14	3 900	970	0.5	166	270	360	440	515	181	360	540	720	905
55TAC03D	55	120	29	2	1	68	86.4	90.2	109.7	32	55	3 400	1.44	4 800	1 060	0.68	190	310	410	500	585	210	420	630	840	1 050
60TAC03D	60	130	31	2.1	1.1	73.9	93.8	98	119	40	55	3 100	1.8	5 200	1 120	0.78	218	355	470	575	670	242	485	725	965	1 210
70TAC03D	70	150	35	2.1	1.1	86.3	108.6	113.4	137.8	59	55	2 700	2.67	6 400	1 250	1.1	262	425	565	690	810	305	615	920	1 230	1 530
75TAC03D	75	160	37	2.1	1.1	92.4	116.17	121	146.2	67	55	2 500	3.2	7 230	1 330	1.3	283	460	610	750	875	345	690	1 040	1 380	1 730
80TAC03D	80	170	39	2.1	1.1	98.5	123.6	128.7	157.5	85	55	2 400	3.8	8 050	1 400	1.5	305	495	660	805	940	390	775	1 170	1 550	1 940
100TAC03D	100	215	47	3	1.1	124	154.9	160.4	194.5	156	55	1 900	7.54	1 240	880	0.15	420	685	910	1 110	1 300	510	1 020	1 530	2 040	2 550
120TAC03D	120	260	55	3	1.1	150.5	186.9	193.4	231.7	254	55	1 500	13.3	1 620	1 050	0.21	520	850	1 130	1 380	1 610	680	1 360	2 040	2 720	3 400

Special bore diameter series

Bearing		Bound	dary dime (mm)	nsions			Dimer (m			Recommended amount of prepacked	Contact	Limiting speed (min ⁻¹)	Mass	Preload ⁽²⁾ (DB and DF Arrange-	Axial rigity ⁽²⁾ (DB and DF Arrange-	Starting torque ⁽³⁾ (DB and DF			mic load i f rows sus		-	I	Limitir number o	ng axial lo f rows su		a
numbers	d	D	В	<i>r</i> (min)	r ₁ (min)	d ₁	d ₂	<i>D</i> ₁	D ₂	grease (cc)	angle	Grease	(kg)	ment (N)	ment (N/µm)	Arrangement (N•m)	1 row (kN)	2 rows (kN)	3 rows (kN)	4 rows (kN)	5 rows (kN)	1 row (kN)	2 rows (kN)	3 rows (kN)	4 rows (kN)	5 rows (kN)
TAC35-3	35	90	23	1.5	1	50.4	64.2	67.1	81.7	14	55	4 600	0.712	2 500	780	0.26	113	184	244	299	350	118	235	355	470	590
TAC40-3	40	110	27	2	1	62	79.1	82.4	100.6	25	55	3 700	1.28	3 900	970	0.5	166	270	360	440	515	181	360	540	720	905
TAC45-3	45	110	27	2	1	62	79.1	82.4	100.6	25	55	3 700	1.21	3 900	970	0.5	166	270	360	440	515	181	360	540	720	905
TAC50-3	50	130	31	2.1	1.1	73.9	93.8	98	119	40	55	3 100	2	5 200	1 120	0.78	218	355	470	575	670	242	485	725	965	1 210
TAC60-3	60	170	39	2.1	1.1	98.5	123.6	128.7	157.5	85	55	2 400	4.47	8 050	1 400	1.5	305	495	660	805	940	390	775	1 170	1 550	1 940
TAC80-3	80	215	47	3	1.1	124	154.9	160.4	194.5	156	55	1 900	8.66	1 240	880	0.15	420	685	910	1 110	1 300	510	1 020	1 530	2 040	2 550
TAC100-3	100	260	55	3	1.1	150.5	186.9	193.4	231.7	254	55	1 500	14.8	1 620	1 050	0.21	520	850	1 130	1 380	1 610	680	1 360	2 040	2 720	3 400

Ball Screw Shaft Diameters and Recommended NSKTAC Series

Shaft diameter (mm)	Standard series	Special bore diameter series
40, 45		TAC35-3
50	40TAC03D	TAC40-3
63	50TAC03D	TAC50-3
80	60TAC03D	TAC60-3
100	80TAC03D	TAC80-3
120	100TAC03D	TAC100-3
140	120TAC03D	

Remarks:

1. Limiting speeds are based on the standard preload of each bearing. Also, the figures are free of the influence arrangement type.

Bearing bore of 100mm or more and TAC80-3 indicates a figures of EL preload.
The starting torque figures indicate grease lubrication.
Permissible axial load equals 0.7 times of limiting axial load.

NSK Roller Guides RA Series

The RA series' roller guides feature high-load capacity and high rigidity and help to preserve the working environment. This series is the culmination of NSK's analysis technology and tribology.

Demand for preloaded rolling linear guides for high-load drive is now increasing. The RA series with high rigidity and a function for preserving a clean environment is one of the most suitable linear guides for high-load applications.

High-load capacity

The world's highest-load capacity, taking full advantage of NSK's analysis technology, ensures a long operating life.

High rigidity

The optimum size of the roller ensures high rigidity and supports more compact machinery.

Highly dust-resistant design

The high performance seals as standard equipment completely block the entry of foreign matter and maintain primary performance over the long time.

Interchangeable series

The interchangeable series of the guide rails and the roller slides are independently available in stock.

Optimal Design

NSK executed a comprehensive, detailed performance simulation of roller guides by integrating its analysis technology and the tribology technology that the company had been developing over many years.

Down to the dimensions and shapes of component details, we have attained an optimal design completely.

Smooth motion by use of retaining pieces

Example of roller slide deformation analysis

Balanced four-directional iso-load specifications

pressure distribution of rollers

Please refer to Cat. No. E3328 for more details

NSK 46

Technical Data sheet

NSK Technical Data Sheet for NSK High-Load Drive Ball Screw Custom-made ball screw NSK sales office Company name: Date: Section: Person in charge: Address: Name of machine*1: Electric injection molding machine; 30-ton capacity Application*2: Clamping axis Drawing/rough sketch attached?: Ves No *1 Please specify capacity of the machine in case of injection molding machine or press. *² If the application is injection molding machine, please indicate the axis. (Examples: injection axis and clamping axis) 1. Use conditions Shaft rotation–Moving nut Normal operation Smooth operation without impact Shaft rotation-Moving shaft Operating Back drive Degree of vibration / 材 Normal operation Nut rotation-Moving nut conditions operation impact Operation associated with impact or □ Nut rotation–Moving shaft Oscillation vibration □с-с 🗹т-т □т-с Direction of load*3 C-T other 🗹 Horizontal Mounting orientation Vertical (Indicate the direction of gravity.) (Refer to figures below.) Grease (Brand name: High-load grease with an extre Lubricant 🗌 Oil Maker: 🗹 Grease gun 🛛 🗌 Automatic How to replenish lubricant Request for NSK recommended ☐ Your request oil hole cm³/ cvcles) Necessity 🗹 Yes 🗌 No NSK S1 necessary? NSK recommended Not necessary of seals Particles / \Box Yes (Size of particle: a) to 0.1, b) over 0.1 to 0.3, c) over 0.3, d) Ingredient: Environment Temperature (40 deg) No particle Surface 🗹 Not required Low-temperature chrome plating Fluoride low-temperature chrome plating Other treatment Quantity used per Quantity in /Month /Year /Lot pcs./machine mass-production machine *³ Please specify loading direction code on the figures below. (Shaft fixed: Main load: C-C T-T T-C C-T (NSK recommended) (NSK recommended) 2. Specifications Shaft Accuracy ø 140 mm Lead 32 mm Ct7 Axial play 0.050 or less mm max diamete grade Nut model Effective Direction of Thread length / 2.5×2 1000 / 1500 right Overall shaft length No. 4032-7.5-S1 turns of balls turn Special note / Requests

Please calculate the life as a continuous operation based on "3. Load chart".

NSK 48

Technical Data sheet

Custom-made ball screw									3. Loa	d chart (If using mu	tiple ball screws ir
Company nam	ie:		Date:			NSK s	sales office		- 4		
Section:			Person in c	harge:					т т		
Address:						$\left\lceil V \right\rceil$			Load F, kN		
Name of machir	ie*1:				Applicatio	n*²:					
Drawing/rough s ¹ Please specify ca ² If the application	pacity of the mac	hine in case of	njection mole		press. les: injection axis and	clamping axis)					
1. Use con	ditions								- -		
Operating conditions	Shaft rotation	□ Shaft rotation-Moving nut □ Normal operation □ Shaft rotation-Moving shaft □ Back drive □ Nut rotation-Moving nut □ operation □ Nut rotation-Moving shaft □ Oscillation		Degree of vibration / impact	Normal o	on associated with impact of	-	Rotational speed N, min ^{-I} Speed V, mm/s			
Direction of load* ³		T-T T-(С-Т	other	Mounting orientation	Horizont	al Indicate the direction of gravity.		tation. eed V		
Lubricant	Grease (Bra	and name:)				-	ନ ଜୁ 		
Request for oil hole	☐ Oil (Ma	ker: commended	□ You	/ ur request	How to replenish lubricant	Grease (gun 🗌 Automatic cm³/ cycles)				
Necessity of seals	C	Yes	□ No		NSK S1 necessary?	□ NSK rec	commended 🗌 Not necessar	y			
Environment	Temperature (deg)		es (Size of partic	l cle: a) to 0.1, b) over 0	.1 to 0.3, c) ove	er 0.3, d) Ingredient:)			
Surface treatment	□ Not required	d 🗌 Low-ter	nperature chr	ome plating	Eluoride low-temp	erature chrome p	plating Other			Axial load*	Rotational speed or Ave
Quantity in mass-production	/Mor	nth	/Year	/Lot	Quantity used per machine		pcs./machine			F (kN)	N (min ⁻¹) V
³ Please specify loa		de on the figure	s below. (Sha	aft fixed: , Ma	l iin load: <)					2	
					→ []					3 ④	_
										5	
	_		-]	-			6	
C-C (NSK recomme	ended)		T-T commended)		T-C		C-T			\bigcirc	
• • · · · · · ·		,	,							8 9	
2. Specific	ations						1	_		10	
Shaft diameter	ý mm Le	ad	mm	Accuracy grade	Ax	ial play	mm max.			Dynamic axial load (max.)	*: (kN)
Nut model		fective		Direction of		read length /	/	-		Stroke in normal us Cycle time:	e: (mm) (s)
No.	tu	rns of balls		turn	Ov	erall shaft length				*If using multiple ball screws	
Special note / Re	quests									data on the machine	
										Nounting accuracy, load con Therefore, we recommend ev	ditions, and lubricating

