NSK Linear Rolling Guide Product

BLOCK

- A-1 Characteristics of **NSK Linear Rolling** Guides
- 1. Comparison of Rolling Guides and Sliding Guides------A1 2. Structure and Characteristics of
- 1. Structure of NSK Linear Guides
- 2. Characteristics of NSK Linear Guides······A2

A-3 Selection of NSK Linear Rolling Guides

	Enical noning dalacs
1. Se	lection Flow Chart A13
2. Rat	ting Life and Basic Load Rating
	A15
2.1	Life and Basic Load RatingA15
1.	Life A15
2.	Rating fatigue lifeA15
3.	Basic load ratings in
	compliance with ISO standard
	A15
4.	Basic dynamic load ratingA15
5.	Calculation of rating fatigue life
	A15
6.	Dynamic equivalent load A16
7.	Basic static load rating A16
8.	Basic static moment load rating
	A16
9.	Basic load rating by load
	directionA16
2.2	How to Calculate the Life A17
1.	Setting operating condition of
	linear guide ······A17
2.	Calculate load to a slide A17
3.	Calculation of dynamic
	equivalent load ······A21

4. Calculation of mean effective
load A23
5. Various coefficients A24
6. Calculation of rating life A25
7. Examination of the basic load
rating
8. Precautions for the design in
examining the life
3. Preload A28
1. Objective of preload A28
2. Preload and rigidity ····································
3. Selection of preload
classification
4. Estimation of the elastic
deformation A30
5. Application examples of preload
A30
6. Load and rating life when the
preload is taken into account
A31
7. Calculating friction force by
preloadA31
4. Accuracy A32
1. Accuracy standard A32
2. Definition of accuracy A32
3. Application example of accuracy
grade and preloadA34
4. Combination of accuracy grade
and preload A35
5. Maximum Rail Length A37
6. Lubrication A38
1. NSK linear guides equipped with
"NSK K1™" lubrication unit …A38
2. Lubrication ······A42
7. Dust Proof A52
1. Standard specification parts - A52
2. Dust-proof partsA53
8. Rust Prevention (Stainless Steel
and Surface Treatment)A57
1. Stainless steel ······A57
2 Surface treatment

2. Surface treatment A57

A- !	9. Special Environment
	1. Heat-resistant specifications • A60
	2. Vacuum and clean specifications
1	3. "NSK linear guides for food
1.	processing equipment and
	medical devices" for sanitary
	environmentA61
	4. Specifications for special
	environments A63
2.	5. Lubrication and materials A64
	6. Responsiveness of NSK linear guides for special environments
:	A66
	7. Precautions for handling A66
	10. Arrangement and Mounting of
	Linear GuidesA67
:	1. Arrangement A67
3.	2. Mounting accuracy A69
	 Installation A72 Assembly random-matching type
;	linear guideA37
4.	5. Butting rail specification
	6. Handling preloaded assembly
-	A78
5.	11. Drills to Select Linear Guide A79
	1. Single axis material handling
	system
A -(2. Machining center ······A84 12. Reference ·····A90
	12. Reference
1. 2.	A-4 NSK Linear Guides™
2. 3.	1. Structure of NSK Linear GuidesA91
4.	2. Characteristics of NSK Linear
	Guides A91

- 3. Types and Characteristics of NSK Linear Guides A93
- 4. Guide to Technical Services A107
- 5. Linear Guides: Handling
- Precautions------A108 6. Design Precautions A109

5 Technical Description	A13 -A9
and Dimension Table for NSK Linear	A91 -A1
Guides General Industrial Use	A111

A1

-A4 A5 -A12

-A90

-A110

-A320

-A349

A321

1. General Industrial Use
1.1 NH Series A113
1.2 VH Series A133
1.3 TS Series A151
1.4 NS Series A157
1.5 LW SeriesA175
2. Liquid Crystal Display and
Semiconductor
2.1 PU Series A191
2.2 LU Series A201
2.3 PE Series A213
2.4 LE Series A223
2.5 Miniature LH Series A237
2.6 LL Series A247
3. Machine Tools
3.1 RA Series A253
3.2 LA Series A271
4. High-Precision Machine and High-
Precision Measuring Equipment
4.1 HA Series A291
4.2 HS Series A305
5. The Comparative Table of Old and
New Series A319

-6 Other Linear Rolling Guide Products

1. Linear Rolling Bushing A32	1
2. Crossed Roller GuideA33	2
3. Roller Pack······A33	8
4. Linear Roller Bearings A34	5

A-1 Characteristics of NSK Linear Rolling Guides

Characteristics of the NSK linear rolling guides are:

- Designs are simple and economic. This contributes to a highly accurate and low cost guide way system.
- · Low friction coefficient facilitates a compact and low cost driving mechanism.
- Ultra-high purity of materials and superb processing technology ensure a long-term reliable operation.
- Prompt delivery thanks to a variety of interchangeable components.
- Users can select the most suitable guide from a wide variety of the ball guides and roller guides.

A-1-1 Comparision of Rolling Guides and Sliding Guides

The following describes a characteristic comparison between general rolling and sliding guide ways.

Comparative characteristics of rolling and sliding guide ways

Function	Rolling guide	Sliding guide
Friction	 Friction coefficient: 0.01 or lower Difference between static and dynamic friction is small. The fluctuation of friction force due to varying speed is far less than sliding guides. 	 Friction is high. The difference between static and dynamic friction coefficient is significant.
Positioning accuracy	 Lost motion is minimal. Stick-slip is minimal. Easy to achieve sub-micron positioning 	Larger lost motion Stick-slip at low speed Difficult to achieve sub-micron positioning
Life	Possible to estimate useful life	Difficult to estimate useful life
Static rigidity	 Generally high No play because of preload Easy to estimate rigidity 	 Rigidity is great against load from a particular direction. There is a mechanical play. Difficult to estimate rigidity
Speed	• Wide range of use from low to high speed	• Unsuitable for extremely low or high speed
Maintenance, reliability	• Long life through a simple maintenance	• Precision is lost greatly by a worn out slide way surface.

In response to the demand for a high-speed, high-precision, high-quality, and easy maintenance, rolling guides which have above features are becoming prevalent.

Utilizing the technology we have sharpened in anti-friction rotating bearings, NSK makes various types of rolling linear guides which are highly accurate and reliable.

A-1-2 Structure and Characteristics of NSK Linear Guides

1. Structure of NSK Linear Guides

By avoiding structural complexity, and by reducing the number of components, we not only enhanced the precision of linear guides, but also are able to keep costs low. We have added NSK's patented unique structural feature to the original invention (**Fig. 1**). This contributes to higher precision and lower prices.

NSK linear guides consist of a rail and a slide (**Fig. 2**). The balls or rollers roll on the race way surface, and are scooped up by the end caps attached to both ends of the ball or roller slide. Then, the balls or rollers go through a passage made in the slide, and circulate back to the other end.

2. Characteristics of NSK Linear Guides

The use of a unique offset Gothic arch groove (Fig. 3) allows the ball type of NSK linear guides to satisfy groove designs required for specific purposes.

This unique ball groove design facilitates precise measurement of the ball groove, thus enabling the stable and highly accurate production of the rails and ball slides for random matching. (**Fig. 4**)

On top of that, we have developed and marketed the NSK Roller Guides, representing the culmination of NSK's analysis technology and tribology.

Such technologies ensure the features of NSK linear guides outlined below.

(1) High precision and quality

• High precision and quality come from our superb production and measuring technologies, strengthened by extensive experience in antifriction rotary bearings and ball screw production. Our quality assurance extends to the smallest components.

(2) High reliability and durability

- Logical simplicity in shape, along with stable processing, maintains high precision and reliability.
- Super-clean materials, our advanced heat treatment and processing technologies increase product durability.

(3) Abundant in type for any purpose

• Various series are available, and their slide models and size categories are standardized to satisfy any requirement. Our technology, polished by abundant experience in the use of special materials and surface treatments, meets the customer's most demanding expectations.

(4) Development of random-matching parts for short delivery time

• The adoption of the Gothic arch groove which makes measuring easy, and a new reliable quality control method has made random-matching of the rails and the ball slides possible. The parts are stocked as standard products, thereby reducing delivery time.

(5) Patented static load carrying capacity (impact-resistance)

• When a super-high load (impact) is applied, our Gothic arch groove spreads the load to surfaces which usually do not come into contact in the ball type NSK linear guides. This increases impact load resistance (Fig. 5).

(6) Lineup of extremely high-load capacity series

• The LA series provides a top class high-load capacity for the ball linear guides through a unique load carrying configuration with three ball recirculation circuits on the one side.

By installing rollers that are the largest possible diameter and length, the NSK roller linear guides have realized the world's highest load capacity, far superior to the roller linear guides of other companies.

Fig. 1 • French Patent in 1932. • Inventor: Gretsh (German)

NSK added its patented technology to the invention in Fig. 1, and improved the linear guide structure, thus realizing low cost design.

Fig. 3 Two point contacts of the offset Gothic arch groove

Fig. 5 Shock-resistance

Fig. 4 Processing and measuring grooves

Measuring grooves is easy: you can obtain highly accurate results for all types of NSK series. This is why you can purchase rails and slides separately for random matching.

A-2 Types of NSK Linear Rolling Guides

Note: For customers who have used the former LH or SH series, NH series is recommended as a substitute. Please confirm the correlation between NH series and former ones on the comparative table at A319.

Rigidity: \cancel{C} , Extremely high; O, High; O, Medium; \bigcirc , Low Friction characteristics: O, Low; \bigcirc , Normal Assembly workability: O, Good; \bigcirc , Fair

Rigidity	Friction characteristic	Assembly workability	Major applications	Page
Ô	Ô	\bigcirc	 Industrial robots Materials handling equipment Semiconductor manufacturing equipment Laser cutting machines Electric discharge machines Packaging/packing machines 	A113
Ô	Ô	Ô	 Industrial robots Materials handling equipment Woodworking machines Laser cutting machines Electric discharge machines Packaging/packing machines 	A133
Ô	Ô	Ô	 Industrial robots Materials handling equipment Woodworking machines Laser cutting machines Electric discharge machines Packaging/packing machines 	A151

NSK	

F

Product	Appearance	Shape	Rolling element	Load carrying characteristics
	NS Series		Ball	High vertical load carrying capacity
	LW Series		Ball	High vertical load carrying capacity
NSK Linear Guides	PU Series		Ball	Four-way equal load carrying capacity
2	LU Series		Ball	Four-way equal load carrying capacity
	PE Series		Ball	Four-way equal load carrying capacity

Rigidity	Friction characteristic	Assembly workability	Major applications	Page
Ô	Ô	\bigcirc	 Industrial robots Materials handling equipment Electric discharge machines Woodworking machines Semiconductor manufacturing equipment Packaging/packing machines Pneumatic equipment 	A157
Ô	Ô	Ô	 Industrial robots Materials handling equipment Electric discharge machines Woodworking machines Semiconductor manufacturing equipment Packaging/packing machines Pneumatic equipment 	A175
\bigcirc	Ô	Ô	 Semiconductor manufacturing equipment LCD manufacturing equipment Medical equipment Optical stages Microscope XY stages Miniature robots Pneumatic equipment Computer peripherals 	A191
\bigcirc	Ô	Ô	 Semiconductor manufacturing equipment LCD manufacturing equipment Medical equipment Optical stages XY stage of microscope Miniature robots Pneumatic equipment Computer peripherals 	A201
0	Ô	Ô	 Semiconductor manufacturing equipment LCD manufacturing equipment Medical equipment Optical stages Microscope XY stages Miniature robots Pneumatic equipment Computer peripherals 	A213

Note: For customers who have used the former LS or SS series, NS series is recommended as a substitute. Please confirm the correlation between NS series and former ones on the comparative table at A319.

Product	Appearance	Shape	Rolling element	Load carrying characteristics
	LE Series		Ball	Four-way equal load carrying capacity
	Miniature LH Series		Ball	High vertical load carrying capacity
NSK Linear Guides	LL Series		Ball	Four-way equal load carrying capacity
2	RA Series		Roller	Four-way equal load carrying capacity
	LA Series		Ball	Four-way equal load carrying capacity

				NBA
Rigidity	Friction characteristic	Assembly workability	Major applications	Page
\bigcirc	Ô	Ô	 Semiconductor manufacturing equipment LCD manufacturing equipment Medical equipment Optical stages XY stages of microscope Miniature robots Pneumatic equipment Computer peripherals 	A223
Ô	Ô	Ô	 Semiconductor manufacturing equipment LCD manufacturing equipment Medical equipment Optical stages Microscope XY stages Miniature robots Pneumatic equipment Computer peripherals 	A237
\bigcirc	Ô	\bigcirc	 Knitting machines Computer peripherals Pneumatic equipment Office equipment 	A247
${\leftrightarrow}$	Ô	Ô	 Machining centers NC lathes Heavy cutting machine tools Various types of NC grinders Gear-cutting machines Press machines Electric discharge machines 	A253
	0	Ô	 Machining centers NC lathes Heavy cutting machine tools Various types of NC grinders Gear-cutting machines Press machines Electric discharge machines 	A271

Product	Appearance	Shape	Rolling element	Load carrying characteristics
ar Guides	HA Series		Ball	Four-way equal load carrying capacity
NSK Linear Guides	HS Series		Ball	High vertical load carrying capacity
Linear rolling bushing			Ball	P
Crossed roller guide			Roller	
Roller pack	100.00		Roller	
Linear roller bearing			Roller	

Rigidity	Friction characteristic	Assembly workability	Major applications	Page
Ô	\bigcirc	Ô	 Machining centers Precision lathes Various types of NC grinders Electric discharge machines Optical stages LCD manufacturing equipment Die molding machines High-precision measuring equipment 	A291
Ô	Ô	Ô	 Machining centers Precision lathes Various types of grinders Electric discharge machines Optical stages LCD manufacturing equipment High-precision measuring equipment 	A305
\bigcirc	Ô	\bigcirc	 Materials handling equipment Packaging/packing machines Medical equipment Pneumatic equipment Office equipment Assembling machines 	A321
\bigcirc	Ô	\bigcirc	 Precision stages Measuring equipment Test equipment Printed circuit assembly machines 	A332
Ô	Ô	\bigcirc	 Large machine tools Conveyor system for heavy objects (guide ways for heavy loads) 	A338
Ô	O	0	 Large machine tools Conveyor system for heavy objects (guide ways for heavy loads) 	A345

A-3 Selection of NSK Linear Rolling Guides

A-3-1 Selection Flow Chart

The flow chart below shows the basic steps for the selection.

A-3-2 Rating Life and Basic Load Rating

A-3-2.1 Life and Basic Load Rating

1. Life

Although used in appropriate conditions, the linear guide deteriorates after a certain period of operation, and eventually becomes unusable. In broad definition, the period until the linear guide becomes unusable is called "life." There are "fatigue life " caused by flaking, and "accuracy life" which the result of wear components.

2. Rating fatigue life

When the linear guide runs under loads, the rolling elements and the rolling contact surface of the grooves are exposed to repetitive stress. This brings about fatigue to the material, and generates flaking. Flaking is scale-like damage to the surface of the rolling contact surface.

Total running distance until first appearance of flaking is called "fatigue life." This is "life" in the narrow sense. The fatigue life varies significantly even in linear guides produced in the same lot, and even when they are operated under the same conditions. This is attributable to the inherent variation of the fatigue of the material itself.

"Rating fatigue life" is the total running distance which allows 90% of the group of linear guides of the same reference number to run without causing flaking when they are independently run under the same conditions. The rating fatigue life is sometimes indicated by total operating hours when the linear guides run at a certain speed.

3. Basic load ratings in compliance with ISO standard

NSK defines the basic load rating in compliance with the ISO standard.

The basic load rating listed in "A-5 Technical Description and Dimension Table for NSK Linear

Guides." comply with the ISO standard.

ISO: International Organization for

Standardization

[Basic dynamic load rating] ISO 14728-1; Rolling bearings — Linear motion rolling bearings

Part 1: Dynamic load ratings and rating life

[Basic static load rating]

ISO 14728-2; Rolling bearings — Linear motion rolling bearings

Part 2: Static load ratings

4. Basic dynamic load rating

- ISO international standard, the basic dynamic load rating, which indicates load carrying capacity of the linear guide, is a load whose direction and volume do not change, and which furnishes 100 km of rating fatigue life.
- In case of the linear guides, it is a constant load applied to downward direction to the center of the slide.
- For balls as rolling element, some linear guide manufacturers in Japan and Asian countries define the load for the basic fatigue life of 50 km as the basic dynamic load ratings.
- The following formula may be used to convert the basic dynamic load rating for 50 km (C_{so}) into the dynamic load rating for 100 km (C_{100}) rated fatigue life.
- For balls as rolling element $C_{100} = \frac{C_{50}}{1.26}$

• For rollers as rolling element $C_{100} = \frac{C_{50}}{1.23}$

5. Calculation of rating fatigue life

• In general, the rating fatigue life "*L*" can be calculated from the basic dynamic load rating "*C*" and the load "*F*" to a slide using the following formula.

[For balls as rolling element] The third power of the index.

For the basic dynamic load rating for 100 km

 $L=100\times\left(\frac{C_{100}}{F}\right)$

For the basic dynamic load rating for 50 km

 $L=50\times\left(\frac{C_{50}}{F}\right)^3$

[For rollers as rolling element] The ten third power of the index.

For the basic dynamic load rating for 100 km

$$L = 100 \times \left(\frac{C_{100}}{F}\right)^{\frac{10}{3}}$$

For the basic dynamic load rating for 50 km

 $L=50\times\left(\frac{C_{50}}{F}\right)^{\frac{10}{3}}$

L ; Rating fatigue life (km)

- C_{100} ; Basic dynamic load rating for 100 km rated fatigue life (N)
- C₅₀; Basic dynamic load rating for 50 km rated fatigue life (N)
- F; Load to a slide (dynamic equivalent load) (N)

6. Dynamic equivalent load

 Loads applied to the linear guide (slide load) comes from various directions up/down and right/left directions and/or as moment loads. Sometimes more than one type of load is applied simultaneously. Sometimes the volume and direction of the load may change.

Various loads cannot be used as they are to calculate the life of the linear guide. Therefore, it is necessary to use a hypothetical load on the slide with a constant volume, which would generate a value equivalent to an actual fatigue life. This is called "dynamic equivalent load." For actual calculation, refer to "A-3-2.2 3. Calculation of dynamic equivalent load"

7. Basic static load rating

- When an excessive load or a momentary large impact is applied to the linear guide, local permanent deformation takes place on the rolling elements and on the rolling contact surfaces. After exceeding a certain level, the deformation hampers smooth linear guide operation.
- Basic static load rating is a static load when: [Permanent deformation of the rolling elements]
 + [permanent deformation of the rolling contact surfaces] becomes approximately 0.0001 times of the rolling element diameter.
- In the case of the linear guides, it is a load which is applied in downward direction to the center of the slide.
- Values of the basic static load rating C₀ are shown in "A-5 Technical Description and Dimension Table for NSK Linear Guides."

8. Basic static moment load rating

 Generally, NSK linear guides use a set of two rails and four slides for the guide way of one axis. Under some operating condition, static moment load should be taken into account.

"*M*₀," which is the limit of static moment load , and calculated from permanent deformation in such use is shown in "A-5 Technical Description and Dimension Table for NSK Linear Guides."

9. Basic load rating by load direction

• The basic load rating is considered to be a downward load to the slide and is indicated in the dimension tables as the dynamic load rating *C* and the static load rating *C*₀ respectively. However, the load may be applied to a slide in upward or lateral directions in actual use. In such a case the basic load rating shall be compensated as shown in **Table 2.1**. The basic dynamic load rating of the RA and LA Series is the same in *C* and *C*₀ for all load directions, up, down and lateral, while the NH Series, for an example, has different basic load ratings by the load direction as shown in the table.

Table 2.1 Basic load ratings by load direction

Load rating	Basic dy	namic loa	ad rating	Basic static load rating			
Load direction	Downward	Upward	Lateral	Downward	Upward	Lateral	
NH,VH,NS, LW,LH,HS	С	С	0.84 <i>C</i>	<i>C</i> ₀	0.78 <i>C</i> ₀	0.65 <i>C</i> ₀	
TS,PU,LU,PE,LE, LL,RA,LA,HA	С	С	С	<i>C</i> ₀	C_{\circ}	C_{\circ}	

Linear Guide

A-3-2.2 How to Calculate the Life

- 1. Setting operating condition of linear guide
- First, set operating conditions to determine whether the temporarily selected model satisfies the required life.
- Major operating conditions are as follows. Set all values to calculate applied loads to each slide. (Refer to **Table 2.2**.)

Axis set up	: Horizontal or vertical
Rail combination	: Single rail or multiple rail
Applying loads	: F_x , F_y and F_z (N)
Slide span	: <i>l</i> (mm)
Rail span	: <i>L</i> (mm)
Position of load action point	: <i>X, Y, Z</i> (mm)
Center of driving mechanism	$: X_{\scriptscriptstyle m b}, Y_{\scriptscriptstyle m b}, Z_{\scriptscriptstyle m b}$ (mm)
Operating speed	: V (mm/sec)
Time in acceleration	: t (sec)
Operating frequency (duty cy	rcle)

2. Calculating load to a slide

• Table 2.2 shows a formula to calculate loads that are going to be applied to each assembled slide into a machine.

The Table shows six typical patterns of linear guide installing structure.

• In the Tables, directions indicated by arrows denote "plus" for the applied loads (F_x , F_y , F_z) and the loads which are applied to the slides. (F_x , F_y , M_y , M_y)

• Codes in the Tables are as follows:

- F_r : Vertical loads to the slide (N)
- $F_{\rm s}$: Lateral loads to the slide (N)
- M_r : Rolling moment to the slide (N · mm)
- $M_{\rm p}$: Pitching moment to the slide (N · mm)
- $M_{\rm v}$: Yawing moment to the slide (N \cdot mm)
- Suffixes (1, 2, ...) to the above $F_r M_y$: Slide number
- F_{si} : Load applied in X direction (i = 1 to n; n is the number of loads applied in X direction) (N)
- F_{v_i} : Load applied in Y direction (j = 1 to n; n is the number of loads applied in Y direction) (N)
- F_{zk} : Load applied in Z direction (k = 1 to n; n is the number of loads applied in Z direction) (N)
- Coordinates (X_{xi} , Y_{xi} , Z_{xi}): Point where load F_{xi} (mm) is applied.
- Coordinates (X_{y_i} , Y_{y_i} , Z_{y_i}): Point where load F_{y_i} (mm) is applied.
- Coordinates (X_{zk} , Y_{zk} , Z_{zk}): Point where load F_{zk} (mm) is applied.
- l: Slide span (mm)
- L: Rail span (mm)
- Coordinates (X_{b} , Y_{b} , Z_{b}): Center of driving mechanism

NSK

• Use the dynamic equivalent coefficient ${\cal E}$ in the table below for an easy conversion of moment loads to the dynamic equivalent load.

The coefficient of each moment direction is as follows.
 E.: Rolling direction
 E.: Pitching direction
 E.: Yawing direction

Table 2.4 Dynamic equivalent coefficients

Unit: 1/m 0

• For the calculation of dynamic equivalent load, use the load in Table 2.3 which matches the intended use of the linear guide.

3. Calculation of dynamic equivalent load

Fig. 2.2

					c or infou	galace	
	Amongon and of linear	Loads nec	essary to c	alculate dyı	Dumancia anuivalant		
Pattern guide		Load		Moment load			Dynamic equivalent Ioad
	guide		Right/left (lateral)	Rolling	Pitching	Yawing	loau
1		F,	Fs	<i>M</i> r	$M_{ m p}$	M _v	F _r = F _r F _{se} = F _s · tanα
2		F,	Fs	<i>M</i> r			$F_{re} = \mathcal{E}_{r} \cdot M_{r}$ $F_{pe} = \mathcal{E}_{p} \cdot M_{p}$ $F_{ye} = \mathcal{E}_{y} \cdot M_{y}$
3		F,	Fs		<i>M</i> _p	M _v	α : Contact angle NH, VH, NS, LW, LH, HS Series $\alpha = 50^{\circ}$
4		F,	Fs				TS, PU, LU, PE, LE, RA, LA, HA Series $\alpha = 45^{\circ}$

Table 2.3 Loads in the arrangement of linear guides

Model		1		Model				Model			
No.	${\cal E}_{r}$	\mathcal{E}_{p}	\mathcal{E}_{v}	No.	${\cal E}_{ m r}$	${\cal E}_{ m p}$	ε_{v}	No.	${\cal E}_{ m r}$	${\cal E}_{ m p}$	\mathcal{E}_{v}
NH15	188	111	132	NS35S	76	87	104	LE15L	50	68	68
NH15L	188	72	86	1105555	70	07	104			00	00
NH20	142	81	97	LW17	66	125	149	LH08	316	269	321
NH20L	142	57	68	LW21	59	108	129	LH10	253	203	242
NH25	123	68	81	LW27	53	76	91	LH12	223	136	162
NH25L	123	51	61	LW35	32	51	61		225	100	102
NH30A	98	70	83	LW50	25	38	46	RA15	105	95	95
NH30EF	98	58	69		25	50	40	RA15L	105	70	70
NH30L	98	44	52	PU05	377	431	431	RA20	79	74	74
NH35	78	51	61	PU07	267	349	349	RA20L	79	55	55
NH35L	78	36	43	PU09	215	222	222	RA25	71	64	64
NH45	60	38	45	PU09L	215	136	136	RA25L	71	50	50
NH45L	60	30	36	PU12	163	204	204	RA30	56	58	58
NH55	51	31	37	PU12L	163	125	125	RA30L	56	44	44
NH55L	51	25	30	PU15	133	174	174	RA35	46	52	52
NH65	43	27	32	PU15L	133	102	102	RA35L	46	39	39
NH65L	43	20	24	10102	100	102	102	RA45	37	40	40
INTIOOL	-10	20		LU05	385	359	359	RA45L	37	30	30
VH15	188	111	132	1 007	286	305	305	RA55	32	33	33
VH15L	188	72	86	LU09	217	242	242	RA55L	32	24	24
VH20	142	81	97	LU09L	217	138	138	RA65	26	28	28
VH20L	142	57	68	LU09R	217	203	203	RA65L	26	19	19
VH25	123	68	81	LU12	167	204	204		20		
VH25L	123	51	61	<u>LŬ12</u> L	167	116	116	LA25	122	76	76
VH30A	98	70	83	LU15	133	174	174	LA25L	122	47	47
VH30EF	98	58	69	LU15L	133	94	94	LA30	105	63	63
VH30L	98	44	52					LA30L	105	43	43
VH35 VH35L	78	51	61	PE05	194	277	277	LA35	84	54	54
VH35L	78	36	43	PE07	141	203	203	LA35L	84	37	37
VH45	60	38	45	PE09	123	161	161	LA45	60	41	41
VH45L	60	30	36	PE09L	123	108	108	LA45L	60	31	31
VH55	51	31	37	PE12	90	136	136	LA55	51	33	33
VH55L	51	25	30	PE12L	90	90	90	LA55L	51	26	26
				PE15	50	111	111	LA65	43	29	29
<u>TS15</u> TS20	128	122	122	PE15L	50	72	72	LA65L	43	20	20
TS20	97	90	90								
TS25	81	77	77	LE05	196	248	248	HA25	122	33	33
TS30	67	61	61	LE05S	196	323	323	HA30	105	27	27
TS35	55	54	54	LE07	141	188	188	HA35	84	23	23
				LE07S	141	349	349	HA45	60	20	20
NS15	177	116	138	LE07L	141	122	122	HA55	51	16	16
NS15S	177	174	208	LE09	123	149	149		4		
NS20	127	94	112	LE09S	123	277	277	HS15	177	45	54
NS20S	127	136	162	LE09L	123	102	102	HS20	127	39	47
NS25	111	70	83	LE12	90	125	125	HS25	111	33	39
NS25S	111	108	129	LE12S	90	233	233	HS30	94	27	32
NS30	94	63	75	LE12L	90	86	86	HS35	76	23	28
NS30S	94	102	121	LE15	50	102	102				
NS35	76	54	64	LE15S	50	174	174				

Definitions of codes appearing at the end of the model number in Table 2.4:

L	: Super-high-load type	; NH45 <u>L</u>
S	: Medium load type	; NS25 <u>S</u>
No co	ode: High-load type	; NH45
Α	: Ball slide shape is square	; NH30 <u>A</u> (only NH30 and VH30)
EF	: Ball slide shape is flanged type (EL, FL type)	; NH30 <u>EF</u> (only NH30 and VH30)
R	: Miniature Series with ball retainer	; LU09 <u>R</u> (only LU and LE)

F_{max}

 $F_{\rm m}$

Fmin

F

0

• The formula is determined by the relationship of loads in terms of volume. A full dynamic equivalent load can be easily obtained by using each coefficient.

After obtaining the dynamic equivalent load of the necessary load directions from Table 2.4, use the formulas below to calculate full dynamic equivalent loads.

- When Fr is the largest load : Fe = Fr + 0.5Fse + 0.5Fre + 0.5Fpe + 0.5Fye
- When Fse is the largest load : Fe = 0.5Fr + Fse + 0.5Fre + 0.5Fpe + 0.5Fye
- When Fre is the largest load : Fe = 0.5Fr + 0.5Fse + Fre + 0.5Fpe + 0.5Fye
- When Fpe is the largest load : Fe = 0.5Fr + 0.5Fse + 0.5Fre + Fpe + 0.5Fye
- When Fye is the largest load : Fe = 0.5Fr + 0.5Fse + 0.5Fre + 0.5Fpe + Fye

For the values of each dynamic equivalent load in the formulas above, disregard load directions and take the absolute value.

• It is necessary to include the amount of preload for the calculation of rating life when selecting "Z3 medium preload" or "Z4 heavy preload" as a preload. For the calculation of full dynamic equivalent loads that consider preload, see "A-3-3 6" on page A31.

4. Calculation of mean effective load

When the load to the slide deviates, obtain a mean effective load which becomes equal to the life of slide under variable load conditions. If the load does not vary, use the dynamic equivalent load as it is.

(1) When load and running distance vary stepwise (Fig. 2.3)

Fig. 2.3 Stepwise load change

Running distance while dynamic equivalent load F_1 is applied: L_1 Running distance while dynamic equivalent load F_2 is applied: L_2 Running distance while dynamic equivalent load F_3 is applied: L_3

.

Running distance while dynamic equivalent load F_n is applied: L_n

From the above, mean effective load Fm can be obtained by the following formula.

In case of roller $Fm = \frac{\frac{10}{3}}{\sqrt{\frac{1}{L} (F_1^{\frac{10}{3}}L_1 + F_2^{\frac{10}{3}}L_2 + \dots + F_n^{\frac{10}{3}}L_n)}}$

$$Fm = \sqrt[3]{\frac{1}{L}} (F_1^3 L_1 + F_2^3 L_2 + \dots + F_n^3 L_n)$$

- Fm: Mean effective load of the deviating load (N)
- L : Running distance (Σ Ln)

A24

(2) When load changes almost linearly (Fig. 2.4)

Approximate mean effective load Fm can be obtained by the following formula.

$$Fm = \frac{1}{3}(Fmin + 2Fmax)$$

Fmin : Minimum value of dynamic equivalent load (N) Fmax : Maximum value of dynamic equivalent load (N)

(3) When load changes in sinusoidol pattern (Fig. 2.5) At time of (a): Fm = 0.65 Fmax

At time of (b): Fm = 0.75 Fmax

Fig. 2.5 Load that changes in sinusoidal pattern

5. Various coefficients

(1) Load factors

- · Although a load applied to the slide can be calculated, the actual load becomes larger than the calculated value due to the machine's vibration and impact.
- · Therefore, calculation of load on the slide should take into consideration the load factors in Table 2.5.

Table 2.5 Load factor fw

Impact/Vibration	Load factor	
No external impact/	1.0 – 1.5	
vibration	1.0 – 1.5	
There is impact/	1.5 – 2.0	
vibration from outside.		
There is significant	2.0 - 3.0	
impact/vibration.	2.0 - 3.0	

(2) Hardness coefficient

- · For linear guides, in order to function optimally, both the rolling elements and the rolling contact surface must have a hardness of HRC58 to 62 to an appropriate depth.
- The hardness of NSK linear guide fully satisfies HRC58 to 62. Therefore, in most cases it is not necessary to consider hardness. If the linear guide is made of a special material by a customer's request, as the material hardness is lower than HRC58, use the following formula for adjustment.

$C_{\rm H} = f_{\rm H} \cdot C$

 $C_{\text{OH}} = f_{\mu}' \cdot C_{\mu}$

- $C_{\rm H}$: Basic dynamic load rating adjusted by hardness coefficient
- $f_{\rm H}$: Hardness coefficient (Refer to Fig. 2.6)
- C_{OH} : Basic static load rating adjusted by hardness coefficient
- $f_{\rm H}$: Static hardness coefficient (Refer to Fig. 2.6)

Fig. 2.6 Hardness coefficient

(3) Reliability coefficient

• In general, a reliability of 90% is customary. In this case, reliability coefficient is 1. Therefore, the reliability coefficient does not have to be included in calculation.

6. Calculation of rating life

(1) Life Calculating Formula

The life calculating formula in the stroke movement with normal lubrication, the following relationships exist between the slide mean effective load F_{m} (N), the basic dynamic load rating to load application direction C(N), and the rating fatigue life L (km).

[For balls as rolling element]

For the basic dynamic load rating for 100 km

f н·**C** 100 $L = 100 \times$ fw·Fm For the basic dynamic load rating for 50 km

f н· **С**50 $L = 50 \times$ fw·Fm

[For rollers as rolling element] For the basic dynamic load rating for 100 km

$$L = 100 \times \left(\frac{f_{\rm H} \cdot C_{10}}{f_{\rm W} \cdot F_{\rm T}} \right)$$

For the basic dynamic load rating for 50 km

- f н С 50 | $L = 50 \times$ fw·Fm
- L : Rating fatigue life (km)
- C_{100} : Basic dynamic load rating for 100 km rated fatigue life (N)
- C_{50} : Basic dynamic load rating for 50 km rated fatique life (N)
- f_H : Hardness coefficient
- : Load coefficient f_{w}
- $F_{\rm m}$: Average load (N)

Note: Do not use the basic static load rating C_0 and the basic static moment rating $M_{\rm R0}$, $M_{\rm P0}$ or $M_{\rm y0}$ for a calculation of the life.

(2) Life as an entire guide way system

In those cases when several slides comprise

a single guide way system	
(such as a single-axis table),	
the life of the slide to which	
the most strenuous condition	
is applied is considered to be	
the life of the entire system.	

For example, in Fig. 2.7, if "slide A" is the slide which receives the largest mean

effective load, or if "slide A" is the one which has the shortest life, the life of the system is considered

Fig. 2.7 Life of a

system

7. Examination of the basic static load rating

(1) Examine from the basic static load rating

• Examine the static equivalent load P_{0} , which is applied to the slide, from the basic static load rating C_0 and the static permissible load factor fs.

> $fs = \frac{C_0}{C_0}$ P

When the static equivalent load P_0 is a combination of vertical loads Fr and lateral load Fs, calculate it using formulas below.

For NH, VH, NS, LW, LH and HS Series:

If compressed load and lateral load are combined $P_0 = Fr + 1.54Fs$

If tensile load and lateral load are combined $P_0 = 1.28Fr + 1.54Fs$

For TS, PU, LU, PE, LE, LL, RA, LA and HA Series: $P_0 = Fr + Fs$

• The table below shows guidelines of *fs* for general industrial use.

Table 2.6

Use conditions	fs
Under normal operating conditions	1 – 2
Operating under vibration/impact	1.5 – 3

· Basic static load rating is not a destructive force to the balls, rollers, rails, or slides. The balls can withstand a load more than seven times larger than the basic static load rating . It is sufficient as a safety factor to the destruction load designed for general machines.

 However, when a heavy load applied to the rail and slide in tension direction, the strength of the bolts which secures the rail and the ball slide affects the strength of the entire system. Strength of the bolt and its material should be considered.

(2) Examining from static moment load rating

· Also examine the static permissible moment load M_{0} from the basic static moment load M_{0} and the \Im static permissible load factor fs.

$$fs = \frac{M_{P^0}}{M_0}$$

If more than one moment load in any direction is combined, please consult NSK.

Fig. 2.8 Moment load directions

8. Precautions for the design in examining the life

The following points must be heeded in examining the life.

- In case of oscillating motion
- If the rolling elements do not rotate all the way, but only halfway, and if this minute stroke is repeated, lubricant disappears from the contact surface of rolling elements and raceways. This generates "fretting," a premature wear. Fretting cannot be entirely prevented, but it can be mitigated.
- · A grease which prevents fretting is recommended for oscillating stroke operations. When a standard grease is used, the life can be markedly prolonged by adding a normal stroke travel (about the slide length) once every several thousand cycles.

When applying pitching or yawing moment

- The load applied to the rolling element rows inside the slide is inconsistent if a pitching or yawing moment load is applied. Loads are heavy on the rolling elements on each end of the row.
- In such case, a heavy load lubricant grease or oil are recommended. Another countermeasure is using one size larger model of linear guide to reduce the load per rolling element.
- The moment load to a ball slide is insignificant for 2-rail, 4-slide combination which is commonly used.

When an extraordinary high load is applied during stroke

· If an extraordinary large load is applied at certain position of the stroke, calculate not only the life based on the mean effective load, but also the life based on the load in this range.

· When an extraordinary heavy load is applied and thus the application of high tensile stress to fixing bolts of the rails and slides is foreseen, the strength of the bolts should be considered.

> When the calculated life is extraordinarily short (Less than 3 000 km in calculated life)

- . In such case, the contact pressure to the rolling elements and the rolling contact surface is extraordinarily high.
- · If the linear guides are operated under such state continually, the life is significantly affected by the loss of lubrication and the presence of dust, and thus the actual life becomes shorter than calculated.
- It is necessary to reconsider the arrangement of linear guides, the number of slide, and the type of model in order to reduce the load to the slides. · It is necessary to consider preload for calculation of rating life when selecting Z3 (medium preload) or Z4 (heavy preload) as a preload. For the calculation of full dynamic equivalent loads that consider preload, see "A-3-3 6" on page A31.

- The standard maximum allowable speed of a linear quide under normal conditions is 100 m/min. However, the maximum allowable speed can be affected by accuracy of installation, operating temperature, external loading etc.
- The end cap with high speed specification must be used when the operating speed exceeds the permissible speed. In such a case, please consult NSK.

A-3-3 Preload

1. Objective of preload

- An elimination of clearance between the raceways and rolling elements vanishes the mechanical play of the linear guide system.
- . When a preload is applied, the deformation of linear guides by external vertical load is further improved thus increasing the system stiffness.
- Preloading method

The preload is applied by inserting rolling elements slightly bigger than the space of two raceways as shown in Fig. 3.1.

2. Preload and rigidity

- . In NSK linear guides, slight size changes of rolling elements, which are going to be inserted in the slide, control the clearance and amount of preload.
- . In NSK linear guides, the rigidity is further increased and the elastic deformation is reduced by applying preload.
- · In general, the load range of ball guide system in which the preload is effective, is about 2.8 times of the preload (Fig.3.2). For roller guide system, it becomes about 2.2 times of the preload.
- Fig. 3.3 shows the relationship between the ball slide deformation and the external vertical load under a specified preload. NH35 is used as an example.
- . The following show the definition of linear guide rigidity.
- (1) Radial rigidity: Rigidity of vertical and lateral directions, up/down and right/left (Fig. 3.4).
- (2) Moment rigidity: Three moment directions, pitching, rolling, and yawing (Fig. 3.5).

Fig. 3.4 Radial rigidity

Fig. 3.1 Preloading method

Fig. 3.2 Elastic deformation

Fig. 3.3 Rigidity of NH35, downward direction load (example)

Fig. 3.5 Moment rigidity

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

- · Since two rails and four slides are used in general as a pair, consideration only for the radial rigidity is sufficient.
- However, in cases as shown in Fig. 3.6, Fig. 3.7 and Fig. 3.8, it is necessary to take into account the moment rigidity in addition to the radial rigidity.

Fig. 3.6 Pitching and yawing direction

3. Selection of preload classification

- Several types of preload that match the characteristic of each series are set for NSK linear guides.
- Types of preload classification for each series are shown in Table 3.1. Table 3.2 shows the selection criterion of the preload classification.

		Preloaded	assembly (r	not random	matching)	Random-matching type			
Preload		Heavy preload	Medium preload	Slight preload	Fine clearance	Medium preload	Slight preload	Fine clearance	
	Series	Z4	Z3	Z1	Z0	ZH	ZZ	ZT	
	NH, NS		0	0	0	0	0	0	
	VH		0	0	0		0	0	
	LW		(())	0	0		0	0	
	PU			0	0			0	
	LU			0	0			0	
Dell suide	PE			0	0			0	
Ball guide	LE			0	0			0	
	Miniature LH			0	0				
	LL				0				
	LA	0	0						
	HA		0	0					
	HS		0	0					
Roller guide	RA		0	0		0	0		

Table 3.1 Classification of preload in each series

Table 3.2 Selection criterion of the preload

Classification of preload	Use condition	Applications
Z0 and ZT (Fine clearance)	 An application in which a set of two parallel linear guides (four ball slides/two rails) is used to sustain a unidirectional load with low vibration and impact. An application in which the accuracy is not very necessary but a friction force must be minimized. 	Welding machines, Glass processing machines, Packaging/packing machines, Materials handling equipment
Z1 and ZZ (Slight preload)	 Moment loads are applied. Application for a highly accurate operation. 	Industrial robots, Inspection/measuring equipment, Laser cutting machine, Electric discharge machines, PCB drillers, Chip mounters
Z3, ZH, and Z4 (Medium preload, Heavy preload)	 Application in which extremely high stiffness is essential. Application in which vibration and impact load will be applied. 	Machining centers, Lathes, Milling machines, Boring machines, Grinders

4. Estimation of the elastic deformation

The followings are the relation between load and deformation.

- Without the preload
- When the rolling element is ball The deformation is proportional to the 2/3
- power of the load. When the rolling element is roller
- The deformation is proportional to the 9/10 power of the load.
- With the preload

The deformation is directly proportional to the load.

Fig. 3.9 Elastic deformation

A preloaded linear guide deforms proportionally to the load as shown in Fig. 3.9; the calculation of system deformation can be done using the deformation curve. The factors required for an estimation of the system deformation are listed below. The stiffness of slide is shown on the relevant explanation of each linear guide series.

<Required conditions to calculate deformation> Volume of load

- Direction of load
- Point of load application
- · Position of deformation calculation
- · Arrangement of rails and ball slides
- · Position of a driving mechanism

Please refer to the calculation formula of deformation for typical table structures on the pages A18 to A20.

Table 3.3 shows typical application for each preload types of the NSK linear guides. Refer to this table when selecting at a price of the selecting at a price of the selecting at the selectin

Table 3.3 Application examples of preload

ہ ب		I	• Prel	- oad	
e o	Application	Heavy	Medium	Slight	Fine
Type of machine	Application	preload Z4	preload	preload	clearance
· c	 Machining centers 	24 ()	Z3, ZH	Ż1, ZZ	Z0, ZT
	Grinders	Õ	0		
,	Lathes	0	0		<u> </u>
ols	Milling machines	0	$\overline{\cap}$		<u> </u>
e to	Drilling machines	Õ	0		<u> </u>
Machine tools	Boring machines		\cap		<u> </u>
ach	Gear cutters	0	n i		<u> </u>
Σ	Diesinking machines		0	0	<u> </u>
	Laser cutting machines		$\tilde{\mathbf{n}}$	- Ő	
	Electric discharge machines		0		
	Punch presses		n l	0	<u> </u>
	Press machines			0	0
ent	Welding machines		0		<u> </u>
Б	Painting machines			0	<u> </u>
link	Textile machines			0	$\overline{\cap}$
d ec	Coil winders		\cap	<u> </u>	
anc	Woodworking machines		\overline{n}	0	\cap
es	Glass processing machines			0	$\overline{\cap}$
Industrial machines and equipment	Stone cutting machines			$\overline{}$	$\overline{\cap}$
Jac	Tire forming machines			0	$\overline{0}$
۳ Je	ATC				$\overline{\cap}$
trić	Industrial robots		0	0	$\overline{\mathbf{n}}$
snp	Materials handling equipment				$\overline{\cap}$
ц	Packing machines			$\overline{}$	\overline{n}
	Construction machines				<u> </u>
	Probers		\cap		\vdash
ties	Wire bonders		0	\cap	<u> </u>
cili	PCB drillers		$\overline{}$	\vdash	
r fa	Wafer slicers		0		<u> </u>
cto	Water silcers Wafer dicers		$\overline{}$		
Semiconductor facilities	Chip mounters		$\overline{}$	0	<u> </u>
noc	IC handlers				<u> </u>
ы	Scanners			0 0 0 0	
Se	Lithographic machines		0	$\overline{}$	<u> </u>
	Measuring/inspection equipment			\vdash_{\cap}	
	Three-dimensional measuring equipment		0	\square	<u> </u>
s	Medical equipment				\cap
Others	OA equipment			0	$\overline{}$
Oth	Railway cars			$\overline{}$	$\overline{\cap}$
	Stage systems				$\overline{}$
	Pneumatic equipment			\square	$\overline{}$
	. noumane equipment			\cup	\cup

6. Load and rating life when the preload is taken into account

- It is necessary to include the amount of preload for the calculation of rating life when the Z3 (medium preload) or the Z4 (heavy preload) preload type is specified.
- Full dynamic equivalent load when the preload is taken into account can be obtained by the following formulas.

For balls as rolling element

$$Fe_{\rm P} = P \left(1 + \frac{Fe}{2.83 \times P} \right)^{\frac{3}{2}}$$

P: Preload (N)

However, when the full dynamic equivalent load taking account of preload is larger than the load at which preload is removed, $Fe_{\rm p} = Fe$. For this case, preload is lost at $F_{\rm po} = 2^{\frac{3}{2}}P$

For rollers as rolling element

$$Fe_{\rm P} = P \left(1 + \frac{Fe}{2.16 \times P} \right)^{\frac{10}{9}}$$

P: Preload (N)

However, when the full dynamic equivalent load taking preload into account is larger than the load at which preload is removed, $Fe_{\rm P} = Fe$. For this case, preload is lost at $F_{\rm P0} = 2^{\frac{10}{2}}P$

7. Calculating friction force by preload

Dynamic friction force per one slide of the ball guide can be calculated from a preload value.
The following is a simple calculation to obtain

the criterion of dynamic friction force. For the slight preload ZZ of a preloaded randommatching type linear guide, use the preload volume of slight preload Z1 type assembly.

F = iP

- F : Dynamic friction force (N)
- P : Preload (N)
- *i* : Contact coefficient

Use the following contact coefficient values (*i*) for each series of linear guides. NH, VH, NS, LW, LH and HS Series

		-				
						: 0.004
LA	and	I HA	Ser	ies		: 0.010
					-	

- PU, LU, PE and LE Series : 0.026 • The starting friction force when the slide begins
- to move depends on lubrication condition. Roughly estimate it at 1.5 to 2 times of the dynamic friction obtained by the above method.

Calculation example

In case of NH35AN - Z3 *i* = 0.004

P = 2 350 (N) (refer to NH series preload) F = iP

= 0.004 × 2 350 = 9.4 (N)

Therefore, the criteria of the dynamic friction force of NH35AN - Z3 is 9.4 N.

For seal friction, refer to seal friction of each Series.

1. Accuracy standard

The accuracy characteristics of linear guide are specified to each series in the variations of assembled height, assembled width, and running parallelism. We also specify the mutual variation of a pair of linear guides in the assembled height and assembled width. The accuracy of the table equipped with a set of linear guides is depending on other accuracies and many factors besides the accuracy of linear guides. Those are the accuracy of the mounting surface of the machine, the mounting span between two linear guides, the span of ball slides, the number of ball slides, and the location of the point at where the accuracy is really required. The NSK linear guides can deal with these factors and provide the best suited model for your specific application.

2. Definition of accuracy

• Table 4.1, Fig. 4.1 and Fig. 4.2 show accuracy characteristics.

Table 4.1 Definition of accuracy

Characteristics	Definition (Figs. 4.1 and 4.2)
Mounting height H	Distance from A (rail bottom datum surface) to C (slide top surface)
Variation of H	Variation of <i>H</i> in slides assembled to the rails of a set of linear guides
Mounting width	Distance from B (rail side datum surface) to D (slide side datum surface).
W_2 or W_3	Applicable only to the reference linear guide.
Variation of W_2 or W_3	Difference of the width (W_2 or W_3) between the assembled slides
	which are installed in the same rail. Applicable only to the reference
	linear guide.
Running parallelism of	Variation of C (slide top surface) to A (rail bottom datum surface) when
slide, surface C to surface A	slide is moving.
Running parallelism of	Variation of D (slide side datum surface) to B (rail side datum surface)
slide, surface D to surface B	when a slide is moving.

Fig. 4.1 Assembled dimensions

Fig. 4.2 Running parallelism of slide

Mounting width: W_2 , and W_3

• Mounting width differs depending on the arrangement of the datum surfaces of the rail and slide on the reference linear guide (indicated as KL on the rail). (**Fig. 4.3** and **Fig. 4.4**)

Fig. 4.3 Mounting width W₂

Fig. 4.4 Mounting width W₃

Running Parallelism of Ball Slide

• Running parallelism of slide is common in all series. Specifications of all accuracy grades are shown in **Table 4.2**. However, applicable accuracy grades differ by series. Please refer to "**Table 4.4 Accuracy grade and applicable series**" on page A35.

		Table 4.2	Running pa	arallelism of	slide		Unit: µm
Accuracy grade	Pre	loaded asser	nbly (not ran	ıdom matchiı	ng)	Random-ma	atching type
Rail length (mm) over or less	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6	Normal grade PN	Precision grade PH	Normal grade PC
- 50	2	2	2	4.5	6	2	6
50 - 80	2	2	3	5	6	3	6
80 - 125	2	2	3.5	5.5	6.5	3.5	6.5
125 – 200	2	2	4	6	7	4	7
200 - 250	2	2.5	5	7	8	5	8
250 - 315	2	2.5	5	8	9	5	9
315 - 400	2	3	6	9	11	6	11
400 - 500	2	3	6	10	12	6	12
500 - 630	2	3.5	7	12	14	7	14
630 - 800	2	4.5 (4)	8	14	16	8	16
800 – 1 000	2.5	5 (4.5)	9	16	18	9	18
1 000 – 1 250	3	6 (5)	10	17	20	10	20
1 250 – 1 600	4	7 (6)	11	19	23	11	23
1 600 – 2 000	4.5	8 (7)	13	21	26	13	26
2 000 – 2 500	5	10 (8)	15	22	29	15	29
2 500 – 3 150	6	11 (9.5)	17	25	32	17	32
3 150 – 4 000	9	16	23	30	34	23	34

Note: Value of () is the running parallelism of RA Series.

3. Application examples of accuracy grade and preload

Table 4.3 shows examples of accuracy grade and preload of NSK linear guides for specific purposes.

 Refer to this table when selecting accuracy grade and preload type for your application.

Table 4.3 Application examples of accuracy grade and preload

ہ ب			Ac	curacy gra	ade			Prel	oad	
Type of machine	Application	Ultra precision	Super precision	High precision	Precision grade	Normal grade	Heavy preload	Medium preload	Slight preload	Fine clearance
- 5		P3	P4	[°] P5, PH	P6	PŇ, PC	Ż4	Ż3, ZH	Ż1, ZZ	Z0, ZT
	 Machining centers 		0	0	0		0	0		
~	Grinders	0	0	0			0	0		
ő	Lathes		0	0	0		0	0		
Machine tools	Milling machines		0	0	0		0	0		
e	Drilling machines		-	0	0		0	0		
hi.	 Boring machines 		0	0	0		0	0		
ac	 Gear cutters 		0	0	0		0	0	-	
Σ	 Diesinking machines 		0	0	0			0	0	
	 Laser cutting machines 		0	0	0			0	0	
	 Electric discharge machines 	0	0	0			0	0		
ţ	 Punch pressses 			0	0			0	0	
Industrial machines and equipment	 Press machines 				0	0			0	0
- La	 Welding machines 				0	0		0	0	0
lui	 Painting machines 				0	0			0	0
ec	 Textile machine 				0	0			0	0
pu	Coil winders				0	0		0	0	
a a	 Woodworking machines 			0	0	0		0	0	0
Jes	 Glass processing machines 				0	0			0	0
ihi	 Stone cutting machines 				0	0			0	0
Jac	 Tire forming machines 					0			0	0
μ	• ATC				0	0			0	0
ria	 Industrial robots 			0	0	0		0	0	0
ust	 Materials handling equipment 				0	0			0	0
ipu	 Packing machines 				0	0			0	0
_	 Construction machines 					0				0
s	Probers	0						0	0	
itie	Wire bonders		0	0				Õ	Õ	
acil	PCB drillers			Ŏ	0			Ŏ	Õ	
or f	Wafer slicers	0	0					0		
lcto	Wafer dicers	0	Ó					Ō		
Semiconductor facilities	Chip mounters	-	-	0	0			Ŏ	0	
COL	IC handlers			Ó	0				0	
, mi	Scanners			0	Õ				Õ	
Se	 Lithographic machines 	0	0					0	Õ	
	 Measuring/inspection equipment 	0	0	0	0			-	0	
	Three-dimensional measuring equipment	Ŏ	Ŏ	Ŏ	Ŏ			0	Ŏ	
Š	Medical equipment	Ŭ	Ő	Ő	Õ				0	0
Others	OA equipment		Ŭ	Ŭ	Õ	0			Õ	Õ
휜	Railway cars				<u> </u>	0			0	Õ
	Stage systems					Ŏ			Ŭ	Ŏ
	Pneumatic equipment				0	0			0	0
	i noumatio equipinent					\bigcirc				

Note: Only Z1 and Z0 are available for PN grade.

For random-matching type, preload "ZH" and "ZZ" are available for PH grade. For PC grade, "ZH", "ZZ" and "ZT" are available.

4. Combination of accuracy grade and preload

(1) Accuracy grades

- The accuracy grade which matches the characteristic of each series is set for the NSK linear guides.
- Table 4.4 shows the accuracy grades available for each series.
- Refer to "3. Application examples of accuracy grade" which shows cases of appropriate accuracy grade for specific purpose.

Table 4.4 Accuracy grades and applicable series

	Prelo	aded assen	nbly (not ra	ndom mato	ching)	Random-ma	atching type
Series	Ultra precision	Super precision	High precision	Precision grade	Normal grade	High precision	Normal grade
	P3	P4	P5	P6	PN	PH	PC
NH, NS	0	0	0	0	0	0	0
VH	0	0	0	0	0		0
LA	0	0	0	0			
LW			0	0	0		0
PE, LE		0	0	0	0		0
PU, LU		0	0	0	0		0
Miniature LH		0	0	0	0		
LL					0		
HA	0	0	0				
HS	0	0	0				
RA	0	0	0	0		0*	

*) Only RA25 to RA65 are available in random matching.

(2) Preload

· Several classifications of preload that match the characteristic of each series are set for the NSK linear guides.

- The classification of preload for each series are shown in Table 4.5.
- Refer to the specifications of each series for details of radial clearance, preload, and rigidity.
- "3. Application examples of accuracy grade" shows the cases of appropriate preload classifications and accuracy grades for specific purposes.

	Preloaded	assembly (i	not random	n matching)	Rano	dom-matching	type
Series	Heavy preload	Medium preload	Slight preload	Fine clearance	Medium preload	Slight preload	Fine clearance
	Z4	Z3	Z1	Z0	ZH	ZZ	ZT
NH, NS		0	0	0	0	0	0
VH		0	0	0		0	0
LA	0	0					
LW		(〇)	0	0		0	0
PE, LE			0	0			0
PU, LU			0	0			0
Miniature LH			0	0			
LL				0			
HA		0	0				
HS		0	0				
RA		0	0		0	0	

Table 4.5 Classification of preload

Notes: 1) Z3 preload classification is only applicable to LW35 and LW50 for LW Series.

2) Only RA25 to RA65 are available in random matching.

3) The preload code of "Z" is omitted from the specification number. Only the number of preload classification code is specified on the last code of the reference number. (Refer to the reference number of each series.)

(3) Combinations of accuracy grade and preload

· Combinations of accuracy grade and preload are shown in Table 4.6.

Table 4.6 Combinations of accuracy grade and preload type

	Accuracy grade	Preload
Duals adapt assessable.	P3 – P6	Z4 – Z0
Preloaded assembly	PN	Z1, Z0
Random-matching type	PC, PH ^{*1, *2}	ZH, ZZ, ZT

*1) The random-matching type is available for the models of RA25 to RA65. PH grade is set for the accuracy. *2) ZH and ZZ preload are available for the PH accuracy grade.

. . .

Unit: mm

A-3-5 Maximum Rail Length

Genera	General Industrial Use Unit: mn									
Series	Size Material	15	20	25	30	35	45	55	65	
NH	Special high carbon steel	2 980	3 960	3 960	4 000	4 000	3 990	3 960	3 900	
	Stainless steel	1 800	3 500	3 500	3 500					
VH	Special high carbon steel	2 000	3 960	3 960	4 000	4 000	3 990	3 960		
VП	Stainless steel	1 800	3 500	3 500	3 500					
TS	Special high carbon steel	1 960	2 920	4 000	4 0 4 0	4 0 4 0				
NS	Special high carbon steel	2 920	3 960	3 960	4 000	4 000				
112	Stainless steel	1 700	3 500	3 500	3 500	3 500				

					U	nit: mm
Series	Size Material	17	21	27	35	50
LW	Special high carbon steel	1 000	1 600	2 000	2 000	2 000

Liquid Crystal Display and Semiconductor

Series	Size Material	05	07	08	09	10	12	15
PU	Stainless steel	210	375		600		800	1 000
LU	Special high carbon steel				1 200		1 800	2 000
LU	Stainless steel	210	375		600		800	1 000
PE	Stainless steel	150	600		800		1 000	1 200
LE	Stainless steel	150	600		800		1 000	1 200
LH	Stainless steel			375		600	800	

Machin	e Tools							U	nit: mm
Series	Size Material	15	20	25	30	35	45	55	65
RA	Special high carbon steel	2 000	3 000	3 900	3 900	3 900	3 650	3 600	3 600
LA	Special high carbon steel			3 960	4 000	4 000	3 990	3 960	3 900

High-Precision Machine and High-Precision Measuring Equipment Unit: mm

Series	Size Material	15	20	25	30	35	45	55
HA	Special high carbon steel			3 960	4 000	4 000	3 990	3 960
HS	Special high carbon steel	2 000	3 960	3 960	4 000	4 000		
н5	Stainless steel	1 700	3 500	3 500	3 500	3 500		

A-3-6 Lubrication

1. NSK linear guides equipped with "NSK K1[™]" lubrication unit

Polyolefin

Unlike vinyl chloride products, polyolefin does not produce dioxin. Polyolefin is also being used increasingly at supermarkets for food wrapping.

What is NSK K1 lubrication unit?

Lubrication oil

It is mineral oil-based lubricant. The oil has a viscosity of 100 cSt.

Lubrication Unit

Remarkable capacity with new material: NSK K1[™] lubrication unit information

- A NSK K1 lubrication unit (referred to as NSK K1) hereafter) equipped with an NSK linear guide is an outstanding new lubrication material.
- A Newly developed porous synthetic resin contains large volume of lubricant oil that seeps out and enhances lubricating function.
- Simply install NSK K1 inside a standard end seal (rubber).
- We also provide NSK K1 lubrication unit for sanitary environments suited for food processing machinery, medical equipment and their ancillaries for the environment where hygiene control is essential. For details, refer to "A-3-9 3. NSK Linear Guides for Food Processing Equipment and Medical Devices for Sanitary Environment".

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

(1) Features

NSK K1 comprises a part of the compact and efficient lubrication unit.

1) Maintenance is required only infrequently

Used with grease, the lubrication function lasts for a long time. Ideal for systems/environments in which replenishing is difficult.

2) Does not pollute the environment

A very small volume of grease combined with NSK K1 can provide sufficient lubrication in the environment where grease is undesirable as well as in the environment where high cleanliness is required.

Food processing/medical equipment, liquid crystal displays/semiconductor manufacturing equipment, etc.

We also provide NSK K1 lubrication unit for sanitary environment suited for food processing machinery, medical equipment and their ancillaries for the environment where hygiene control is essential. For details, refer to "A-3-9 3. NSK Linear Guides for Food Processing Equipment and Medical Devices for Sanitary Environment".

(2) Functions

NSK K1 has various superb functions. NSK's ample test data and field performances confirm NSK K1 abilities.

1) Durability test at high speed, with no other lubrication

Fig. 6.2 shows test results under these conditions. The linear guide operated with no lubricant is unable to travel after a short period because breakage occurs. Equipped with NSK K1, the linear guide easily travels 25 000 km.

Conditions: Sample ; LH30AN (preload Z1) Travel speed ; 200 m/min

3) Good for applications where lubricant is washed away

Used with grease, life of the machine is prolonged even when the machine is washed entirely by water, or in an environments where the machine is exposed to rain or wind.

4) Maintains efficiency in dusty environments

In environments where oil- and grease-absorbing dust is produced, long-term efficiency in lubrication and prevention from foreign inclusions is maintained by using NSK K1 in combination with grease.

Woodworking machines, etc.

*Stainless steel linear guides are available for use in corrosive environments or other environments where rusting is a potential problem.

 Stroke
 ; 1 800 mm

 No lubricant:
 Completely degreased, no lubrication

 NSK K1:
 Completely degreased, no lubrication

 + NSK K1

2) Immersion test

Fig. 6.3 shows the test results after a linear guide is immersed in water once per week for 24 hours at a time, then traveled for 2 700 km. Without NSK K1, the ball groove sufrace wore out at an early stage and broke. With NSK K1, the wear was reduced to about 1/3 (**Table 6.1**). This test proves the effect of NSK K1. Conditions: Sample ; LS30 Stainless steel (proload 71)

	(preload Z1)
Travel speed	; 24 m/min
Stroke	; 400 mm
Load	; 4 700 N/Slide
Lubricant	; Fully packed with grease
	(*) exclusive use for food
	proccesing machines
andition	

Immersing condition: Immersed and traveled once per

week for 24 hours at a time.

* Grease made in U.S.A.

Characteristic Consistency: 280 Base oil viscosity: 580 (cSt)

Table 6.1 Comparison in wear of grooves and steel balls (2 700 km)

			σπι. μπ
Lubricating condition	Ball slide groove	Rail groove	Steel balls
With NSK K1	16 – 18	2 - 3	6 - 8
Without NSK K1	30 – 45	9 – 11	17 – 25

Fig. 6.3 Durability test immersed in water

4) Dust generation

Fig. 6.5 is a comparison of dust generation of NSK K1. The combination of NSK K1 and NSK Clean Grease LG2 (low dust generation grease) generates as little dust as fluorine grease (vacuum grease).

Conditions: Sample ; LS20 Travel speed ; 36 m/min

3) Durability test with wood chips

Wood chips absorb lubricant. Maintaining lubrication in such environment is extremely difficult. Fig. 6.4 shows that the life when NSK K1 is added to a standard seal is two times longer than the life when two seals are combined (standard double seal).

Conditions:	Sample	; LH30AN (preload Z1)
	Travel speed	; 24 m/min
	Stroke	; 400 mm
	Load	; 490 N/Slide
Seal specific	ations/lubricant	:
	Standard double S	eal…Standard double
		Seal + AS2 Grease
	NSK K1······	··NSK K1 + Standard
		seal + AS2 Grease
Wood chip c	onditions:	

1..... Volume of wood chips: Large 2..... Volume of wood chips: Medium

Fig. 6.4 Durability test with wood chips

Fig. 6.5 Comparison of dust emission

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

(3) Specifications

1) Applicable series and sizes

a) Can be installed in NH, NS, LW, PU, LU, PE, LE, LH, RA, LA, HA, and HS series. It is standard equipment for the VH and TS Series.

b) Can be used with stainless steel materials and surface-treated items.

2) Standard specifications

a) NSK K1 is installed between the end seal and end cap.

For the TS series, it is installed in the end cap. (Double-seal specification, and specification with protector are also available upon request.)

b) NSK standard grease is packed inside the slide.

(You may specify the type of grease and its volume if required.)

c) Accuracy and preload classifications are the same as standard items. (Dynamic friction increases slightly due to NSK K1.)

3) Number of installed NSK K1

Normally, one NSK K1 should be installed on both ends of slides. (two K1s for one slide)

However, more NSK K1 may be required under more stringent operating conditions and environment. Please consult NSK for details in such a case.

2. Lubrication

Mainly there are two ways of lubrication, grease and oil, for linear guides.

Use a lubricant agent and method most suitable to condition requirements and the purpose to optimize functions of linear guides.

In general, lubricants with low base oil kinematic viscosity are used for high-speed operation, in which thermal expansion has a large impact, and in low temperatures.

Lubrication with high base oil kinematic viscosity is used for oscillating operations, operations in low speeds and in high temperatures.

The following are lubrication methods by grease and by oil.

(1) Grease Lubrication

Grease lubrication is widely used because it does not require a special oil supply system or piping. Grease lubrication accessories available from NSK are:

• Various types of grease in bellows tube which can be instantly attached to the hand grease pump;

• NSK Grease Unit that consists of a hand grease pump and various nozzles. These are compact and easy to use.

1) NSK grease lubricants

Table 6.2 shows the marketed general grease widely used for linear guides. In addition to these grease, NSK provides special grease for specific conditions and purposes.

Туре	Thickener	Base oil	Base oil kinematic viscosity mm²/s (40°C)	Range of use temperature (°C)	Purpose
AS2*1	Lithium type	Mineral oil	130	-10 - 110	For general use at high load
PS2 ^{*2}	Lithium type	Synthetic oil + synthetic hydrocarbon oil	15.9	-50 - 110	For low temperature and high frequency operation
LG2	Lithium type	Mineral oil + synthetic hydrocarbon oil	32	-20 - 70	For clean environment
LGU	Diurea	Synthetic hydrocarbon oil	95.8	-30 - 120	For clean environment
NF2	Urea composite type	Synthetic hydrocarbon oil	26	-40 - 100	For fretting resistant

Table 6.2 Grease lubricant for linear guides

*1) Standard grease of NH, VH, TS, NS, LW, LH, RA, LA, HA, and HS Series.

*2) Standard grease of PU, LU, PE, and LE Series.

Precautions for handling					
To maintain high fuctionality of the NSK K1, observe the following precautions.					
1. Temperature range for use: Maximum temperature in use: 50°C					
	Momentary maximum temperature in use: 80°C				
2. Chemicals that should	not come into contact with NSK K1:				
	Do not leave the NSK K1 in an organic solvent, such as				
hexane and thinner that remove oil, or rust preventive oil					
	that contains white kerosene.				
Note: Water-type cutting oil, oil-type cutting oil, mineral-oil type grease and ester-type grease do					

not damage NSK K1.

[1] NSK Grease AS2

• Features

It is environmentally friendly and widely used grease for high-load applications. It is mineral oil based grease containing lithium thickener and several additives. It is superb in load resistance as well as stability in oxidization. It not only maintains good lubrication over a long period of time, but also demonstrates superb capability in retaining water. Even containing a large amount of water, it does not lose grease when it is softened.

Application

It is standard grease for general NSK linear guides. It is prevalently used in many applications because of its high base oil viscosity, high-load resistance, and stability in oxidization.

Nature

Thickener	Lithium soap base
Base oil	Mineral oil
Consistency	275
Dropping point	181°C
Volume of evaporation	0.24% (99°C, 22 hr)
Copper corrosion test	Satisfactory (Method B, 100°C, 24 hr)
Oil separation	2.8% (100°C, 24 hr)
Base oil kinematic viscosity	130 mm²/s (40°C)

[2] NSK Grease PS2

• Features

The major base oil component is synthetic oil with mineral oil. It is an excellent lubrication especially for low-temperature operation. It is for a high-speed and light-load application.

Application

It is standard grease for NSK miniature linear guides. It is especially superb for low-temperature operation, but also functions well in normal temperatures, making it ideal for small equipment with light load.

Nature

Thickener	Lithium soap base
Base oil	Synthetic oil + Synthetic hydrocarbon oil
Consistency	275
Dropping point	190°C
Volume of evaporation	0.60% (99°C, 22 hr)
Copper corrosion test	Satisfactory (Method B, 100°C, 24 hr)
Oil separation	3.6% (100°C, 24 hr)
Base oil kinematic viscosity	15.9 mm²/s (40°C)

[3] NSK Grease LG2

• Features

This grease was developed by NSK to be exclusively used for linear guides in clean room. Compared to the fluorine grease which is commonly used in clean room, LG2 has several advantages such as:

- Higher in lubrication function
- Longer lubrication life

• More stable torque (resistant to wear) · Higher rust prevention.

In dust generation, LG2 is more than equal to the fluorine grease in keeping dust volume low. Since the base oil is not special oil but mineral oil, LG2 can be handled in the same manner as general grease.

Application

LG2 is the lubrication grease for linear guides for semiconductor and liquid crystal display (LCD) processing equipment which require a highly clean environment. Because LG2 is exclusively for a clean environment at normal temperatures, however, it cannot be used in a vacuum environment.

Refer to "Special environment" in page A60 for the detailed data on superb characteristics of NSK Grease LG2.

Nature

Thickener	Lithium soap base
Base oil	Mineral oil + Synthetic hydrocarbon oil
Consistency	199
Dropping point	201°C
Volume of evaporation	1.40% (99°C, 22 hr)
Copper corrosion test	Satisfactory (Method B, 100°C, 24 hr)
Oil separation	0.8% (100°C, 24 hr)
Base oil kinematic viscosity	32 mm²/s (40°C)

[4] NSK Grease LGU

• Features

This is a proprietary urea base grease of NSK featuring low dust emission exclusively for linear guides which are used in clean room.

In comparison with the fluorine base grease, which has been used commonly in clean room, LGU has better lubricating property, longer duration of lubricant, better torgue variation, much better anti-rust property, and equivalent or better dust generation. In addition, this grease can be handled in the same way as the other common grease because high-grade synthetic oil is used as the base oil.

LGU grease contains much less metallic elements compared to LG2 grease. It can be used in high temperature environment.

Application

This is exclusive lubrication grease for linear guides that are installed in equipment that requires cleanliness, as same as LG2 grease, and it can be used in high temperature range of -30°C to 180°C. This grease cannot be used in vacuum.

Nature

Thickener	Diurea
Base oil	Synthetic hydrocarbon oil
Consistency	201
Dropping point	260°C
Volume of evaporation	0.09% (99°C, 22 hr)
Copper corrosion test	Satisfactory (Method B, 100°C, 24 hr)
Oil separation	0.6% (100°C, 24 hr)
Base oil kinematic viscosity	95.8 mm²/s (40°C)

[5] NSK Grease NF2

[5] NSK Grease NF2
Features
It uses high-grade synthetic oil as the base oil and b urea base organic compound as the thickener. It has remarkable anti-fretting corrosion property. It can be used in wide temperature range, from low to high, and has superior lubrication life.

Application

This grease suits for linear guides whose application includes oscillating operations. Allowable temperature range is -40°C to 100°C.

Nature

Thickener	Diurea
Base oil	Synthetic hydrocarbon oil
Consistency	288
Dropping point	260°C
Volume of evaporation	0.22% (99°C, 22 hr)
Copper corrosion test	Satisfactory (Method B, 100°C, 24 hr)
Oil separation	0.5% (100°C, 24 hr)
Base oil kinematic viscosity	26 mm²/s (40°C)

Precautions for handling

- Wash the linear guides to remove oil prior to applying Clean Grease LG2 or LGU, so the grease functions are fully utilized.
- The clean grease is exclusively used for clean environments at normal pressure.

2) How to replenish grease

Use the grease fitting of a slide if an exclusive grease supply system is not used. Supply the required amount of grease by a grease pump.

Wipe off old grease and accumulated dust before supplying new grease. If the grease fitting is not used, apply grease directly to the rail. Remove the seal if possible, and move the slide few strokes so the grease permeates it. A hand grease pump, an exclusive and easy lubricating device for linear guides, is available at NSK.

3) Volume of grease to be replenished

Once grease is replenished, another supply is not required for a long time. But under some operational conditions, it is necessary to periodically replenish grease. The following are replenishing methods.

· When there is an exclusive grease supply system and the volume from the spout can be controlled, the criterion is:

All at once, replenish the amount that fills about 50% of the internal space of the slide. This method eliminates waste of grease, and is efficient.

Page A46 shows the internal spaces of slide of each series for your reference.

• When replenishing grease using a grease gump: Use a grease pump and fill the inside of slide with grease. Supply grease until it comes out from the slide area. Move the slide by hand while filling them with grease, so the grease permeates all areas. Do not operate the machine immediately after replenishing. Always try to run-in the system a few times to spread the grease throughout the system and to remove excess grease from inside. Running-in operation is necessary because the sliding force of the linear guide greatly increases immediately after the replenishment (full-pack state) and may cause problems. Grease's stirring resistance is accountable for this phenomenon. Wipe off excess grease that accumulates at the end of the rail after trial runs, so the grease does not scatter to other areas.

NH Series	6	Unit: cm ³
Series	N	
Model No.	High-load type	Ultra-high-load type
15	3	4
20	6	8
25	9	13
30	13	20
35	22	30
45	47	59
55	80	100
65	139	186

Table 6.4 Inside space of the slide

Model No.

17

21

27 35

50

LW Series Unit: cm³ Series LW 3 3 7 24 52

VH Series	
-----------	--

Series	VH		
Model No.	High-load type	Ultra-high-load type	
15	3	4	
20	6	8	
25	9	13	
30	13	20	
35	22	30	
45	47	59	
55	80	100	

Unit: cm

Unit: cm³

PU, LU Se	eries			Unit: cm ³
Series	PU		LU	
Model No.	Standard type	High-load type	Standard type	High-load type
05	0.1	-	0.1	-
07	0.1	-	0.1	-
09	0.2	0.3	0.2	0.3
12	0.3	0.4	0.3	0.4
15	0.8	1.1	0.8	1.1

TS Series	Unit: cm ³
Series Model No.	TS
15	2
20	3
25	6
30	9
35	15

PE, LE Series

, 00	Unit: cm ³					
Series PE			LE			
Model No.	Standard type	High-load type	Medium-load type	Standard type	High-load type	
05	0.1	-	0.1	0.1	-	
07	0.2	-	0.1	0.2	0.3	
09	0.4	0.5	0.2	0.4	0.5	
12	0.5	0.7	0.3	0.5	0.7	
15	1.2	1.6	0.8	1.2	1.6	

Unit: cm³

12

18

29

48

86

177

4) Intervals of checks and replenishments

Although the grease is of high quality, it gradually deteriorates and its lubrication function diminishes. Also, the grease in the slide is gradually removed by stroke movement. In some environments, the grease becomes dirty, and foreign objects may enter a slide. New grease should be replenished depending on the frequency of use. The following is a guide of intervals of grease replenishments to linear guides.

Table 6.2. Intervals of shocks and verificities mante for success lubrication

Table	Table 6.3 Intervals of checks and replenishments for grease lubrication				
Intervals of checks	Items to be checked	Intervals of replenishments			
3-6 months	Dirt, foreign matters such as cutting chip	Usually once per year is sufficient. Every 3 000 km for a system such as material handling equipment that travels more than 3 000 km per year. Replenish if checking results			
		warrant it necessary.			

Notes: 1) As a general rule, do not mix greases of different brands. Grease structure may be destroyed if greases of different thickeners are mixed. Even when greases have the same thickener, different additives in them may have an adverse effect on each other.

2) Grease viscosity varies by temperature. Viscosity is particular high in winter due to low temperature. Pay attention to increase in linear guide's sliding resistance in such occasion.

NS Series

Series		NS			
	Model No.	Medium-load type	High-load type		
	15	2	3		
	20	3	4		
	25	5	8		
	30	8	12		
	35	12	19		

RA Series				
Unit: cm				
Series	R	A		
Model No.	High-load type	Ultra-high-load type		
15	1	1.5		
20	2	2.5		
25	3	3.5		
30	5	6		
35	6	8		
45	10	13		
55	15	20		
65	33	42		

Miniature LH Series

	Offit: Offi
Series Model No.	LH
08	0.2
10	0.4
12	1.2

LA Series LA Series High-load type Ultra-high-load type Model No.

8

14

21

38

68

130

25

30

35

45

55

65

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

inear Guides

5) NSK grease unit

A hand grease pump and lubrication grease contained in a bellows tube (80 g of grease) which can be loaded to the grease pump.

[1] Composition of NSK grease unit

Components and grease types are shown below.

		Name	(Tube color)	Reference number
NSK Grease	Unit		(1000 0000)	
NSK	Grease	NSK Grease AS2	(Ocher)	NSK GRS AS2
(80 g	j in a bellows tube)		(Orange)	NSK GRS PS2
		—— NSK Grease LG2	(Blue)	NSK GRS LG2
			(Yellow)	NSK GRS LGU
		NSK Grease NF2	(Gray)	NSK GRS NF2
NSK	Hand Grease Pump Uni	t		
_		mp : HGP NZ1 One nozzle is p vith a hand grease pump)	provided with a ha	NSK HGP and grease pump.)
				NSK HGP NZ1
				NSK HGP NZ2
			zzle	NSK HGP NZ3
				NSK HGP NZ4
				NSK HGP NZ5
			ion pipe	NSK HGP NZ6
			ion pipe	NSK HGP NZ7

[2] NSK greases (80 g in a bellows tube)

Refer to pages A43 and D14 for their natures and details.

Fig. 6.6 Bellows tube

[3] NSK hand grease pump unit

a) NSK Hand Grease Pump (Reference number: NSK HGP)

Features

- Inserting by high pressure…Insert at 15 Mpa.
- No leaking ……..Does not leak when held upside down.
- Easy to change grease ···· Simply attach grease in bellows tube.
- Remaining grease ……Can be confirmed through slit on tube.
- Several nozzles ·······Five types of nozzles to choose from.

Specifications

- Discharge rate 15 MPa
- Spout volume ······0.35 cc/shot
- Mass of main body······Without nozzle 240 g Provided nozzle 90 g
- Outer diameter of bellows
- grease tube ϕ 38.1
- Accessories
 Several nozzles for a unique application can be attached

Fig. 6.7 NSK Hand Grease Pump with NSK straight nozzle

*Air is contained in the unopened bellows tube. Try the system tens of times when to

use the hand grease pump. The tube will be use after deflated from the tube.

Table 6.5 Nozzles that can be attached to NSK Hand Grease Pump

	Tuble 0.0	Grease IIIIII	gs uscu it		cui guiuc			
Series	Model No.	Tap hole for grease fitting	v	Straight nozzle NZ1	Chuck nozzle NZ2	Drive-in fitting nozzle NZ3	Point nozzle NZ4	Flexible nozzle NZ5
	NH15	φ3	Drive-in type			0		
NH Series	NH20, 25, 30, 35 [*]	M6×0.75	B type	0	0			0
	NH45, 55, 65	Rc1/8	B type	0	0			0
	VH15	φ3	Drive-in type			0		
VH Series	VH20, 25, 30, 35 [*]	M6×0.75	B type	0	0			0
	VH45, 55	Rc1/8	B type	0	0			0
TO Carles	TS15	φ3	Drive-in type			0		
TS Series	TS20, 25, 30, 35 [*]	M6×0.75	B type	0	0			0
NO.0. :	NS15	φ3	Drive-in type			0		
NS Series	NS20, 25, 30, 35*	M6×0.75	B type	0	0			0
	LW17	φ3	Drive-in type			0		
LW Series	LW21, 27, 35*	M6×0.75	B type	0	0			0
	LW50	Rc1/8	B type	0	0			0
DULC - via -	PU05, 07, 09, 12	-	_				0	
PU Series	PU15	φ3	Drive-in type			0		
LU Series	LU05, 07, 09, 12, 15	-	_				0	
PE Series	PE05, 07, 09, 12	-	-				0	
PE Series	PE15	φ3	Drive-in type			0		
LE Series	LE05, 07, 09, 12, 15		-				0	
Miniature	LH08, LH10	-	-				0	
LH Series	LH12	φ3	Drive-in type			0		
	RA15, 20	φ3	Drive-in type			0		
RA Series	RA25, 30, 35 [*]	M6×0.75	B type	0	0			0
	RA45, 55, 65	Rc1/8	B type	0	0			0
	LA25, 30, 35*	M6×0.75	B type	Ó	Õ			Ō
LA Series	LA45, 55, 65	Rc1/8	B type	0	0			0
LLA Carica	HA25, 30, 35 [*]	M6×0.75	B type	0	0			0
HA Series	HA45, 55	Rc1/8	B type	Ó	Õ			Ō
	HS15	φ3	Drive-in type			0		
HS Series	HS20, 25, 30, 35*	M6×0.75	B type	0	0			0

Table 6.6 Grease fittings used for NSK linear quide

Note: PU, LU, PE, and LE Series; Apply grease directly to ball groove, etc. using a point nozzle. *) When using a chuck nozzle, make sure that it does not interfere with the table on linear guides.

Fig. 6.8 Grease fittings

A long threaded grease fitting is required because of dust-proof parts. Please refer to the sections pertaining to the lubrication and dust-proof parts of each series.

NSK

.inear Guides

(2) Oil lubrication

Required amount of new oil is regularly supplied by: • Manual or automatic intermittent supply system;

Oil mist lubricating system via piping.

Equipment for oil lubrication is more costly than one for grease lubrication. However, oil mist lubricating system supplies air as well as oil, thus raising the inner pressure of the slide. This prevents foreign matters from entering, and the air cools the system. Use an oil of high atomizing rate such as ISO VG 32-68 for the oil mist lubrication system.

ISO VG 68-220 are recommended for common intermittent replenishment system. Approximate volume of oil Q for a slide of linear guide per hour can be obtained by the following formula.

In case of all ball type linear guides except LA series

 $Q \ge n/150 \text{ (cm}^3/\text{hr})$ In case of LA and RA series $Q \ge n/100 \text{ (cm}^3/\text{hr})$ *n*: Linear guide size code e.g. When NH45 is used, n = 45, Therefore,

 $Q = 45/150 = 0.3 \text{ cm}^3/\text{hr}$

Table 6.7	Intervals of	of checks	and rep	olenishments

For the oil lubrication by gravity drip, the oil supply

position and installation position of the slide are crucial. In case of linear guide, unless it is installed to

a horizontal position, the oil flows only on the down

side, and does not spread to all raceway surface. This

may cause insufficient lubrication. Please consult

NSK to correct such situations prior to use. NSK has

the internal design which allows oil lubricant to flow

Table 6.7 shows the criterion of intervals of oil checks

throughout the system.

and replenishments.

			•
Method Intervals of checks Item		ltems to check	Replenishment or intervals of changes
Automatic intermittent supply	Weekly	Volume of oil, dirt, etc.	Replenish at each check. Suitable volume for tank capacity.
Oil bath	Daily before operation	Oil surface	Make a suitable criterion based on consumption

Notes: 1) As with grease lubrication, do not mix oil lubricant with different types.

- 2) Some components of the linear guide are made of plastic. Avoid using an oil that adversely affects synthetic resin.
- 3) When using oil mist lubricating system, please confirm an oil supply amount at the each outlet port.

A-3-7 Dust Proof

1. Standard specification parts

- To keep foreign matters from entering inside the slide, NSK linear guides have end seals on both ends, bottom seals at the bottom surfaces, and an inner seal in the inside of slide.
- The seals for standard specification for each series are shown in **Table 7.1**.
- Seal friction per a standard slide is shown in the technical description of the dust-proof parts of each series.

Table 7.1 Standard seals

		End seal	Bottom seal	Inner seal
NH Series	NH15	0	0	-
INH Series	NH20, NH25, NH30, NH35, NH45, NH55, NH65	0	0	\triangle
VH Series	VH15	0	0	-
VH Selles	VH20, VH25, VH30, VH35, VH45, VH55	0	0	\triangle
TS Series	TS15, TS20, TS25, TS30, TS35	0	0	0
NS Series	NS15	0	0	-
No Series	NS20, NS25, NS30, NS35	0	0	\triangle
LW Series	LW17, LW21, LW27, LW35, LW50	0	0	-
PU Series	PU05, PU07, PU09, PU12, PU15	0	-	-
LU Series	LU05, LU07, LU09		-	-
LO Series	LU12, LU15	0	-	-
PE Series	PE05, PE07, PE09, PE12, PE15	0	-	-
LE Series	LE05, LE07, LE09, LE12, LE15	0	-	-
Miniature	LH08, LH10	0	-	-
LH Series	LH12	0	0	-
RA Series	RA15, RA20	0	0	\bigtriangleup
NA Series	RA25, RA30, RA35, RA45, RA55, RA65	0	0	0
LA Series	LA25, LA30, LA35, LA45, LA55, LA65	0	0	\bigtriangleup
HA Series	HA25, HA30, HA35, HA45, HA55	0	0	0
HS Series	HS15, HS20, HS25, HS30, HS35	0	\triangle	-

 \bigcirc : Equipped as a standard feature

riangle : Available upon request

A51

2. Dust-proof parts

• NSK has the following items for the dust-proof parts. Select a suitable type for the operating environment.

Table 7.2	Optional	dust-proof	parts
-----------	----------	------------	-------

Name	Purpose	Reference page
NSK K1 Iubrication unit	Made of oil impregnated resin. Enhances lubricating functions.	A38 – A41
Double seal	It combines two end seals for enhancing sealing function.	A53
Protector	Protect the end seal from hot and hard contaminants.	A54
Rail cap	Prevents foreign matters, such as swarf generated in cutting operation from clogging the rail-mounting holes.	A54
Inner seal	Installed inside a slide, and prevents foreign matters from entering the rolling contact surface.	A55
Bellows	Covers the linear guide.	A55
Rail cover *	Covers the rail top surface, and prevents foreign matters, such as cutting dust, from collecting in the rail mounting holes.	A310

*) The rail cover is available only for RA25 to RA65 of RA series.

(1) Double seal

- It is a combination of two end seals to enhance seal function.
- When the double seal is installed, the end seal section becomes thicker than the standard item.
 Please pay attention to the increase in a slide length when designing the mounting dimension of slide and the table stroke. Please refer to the section of dust-proof components for the dimensional increase in the length direction of each series due to fitting of double seal.
- Double-seal set: Can be installed to a completed standard ball slide assembly later upon request. It comprises two end seals, two collars, and two machine screws for installation (Fig. 7.2). The product reference numbers of each series are described on the section of dust-proof parts.
- When attaching a grease fitting to the end cap after the double seal is equipped, you require a connector shown in Fig. 7.2. Please specify the connector set when ordering the linear guides.
- For VH, RA, LA, HA, and HS Series, the doubleseal set can be only installed before shipping from the factory.

Fig. 7.2 Double seal

(2) Protector

- A protector is usually installed outside the end seal to prevent high-temperature fine particles such as welding spatter and other hard foreign matters from entering the slide.
- Same as the case with the double seal, when the protector is installed, the slide becomes longer. Take this thickness of slide into consideration for determining the relevant dimensions such as the system stroke and the ball slide installation envelope. An increase in the length of the ball slide due to the installation of protector is shown in the technical description of the dust-proof parts of each series.
- The protectors are available from the stock and we can install them to a completed standard slide assembly upon request. The model numbers of the protectors for ordering are shown in the technical explanation of the dust -proof parts of each series.
- When attaching a grease fitting to the end cap after the protector is equipped, you require the connector shown in **Fig. 7.3**. Please specify the connector set when ordering the linear guides.
- For VH, RA, LA, HA, and HS Series, the protector can only be installed only before shipping from the factory.

(3) Bolt-hole cap to plug the bolt holes for rail mounting

- After the rail is mounted to the machine base, a bolt-hole cap is used to plug the bolt hole to prevent foreign matters from clogging up the hole and from entering into the slide (Fig. 7.4).
- The bolt-hole cap is made of synthetic resin which has superb in its resistance to oil and abrasion.
- Sizes of the bolt for the each linear guide model as well as the reference number of the bolt-hole cap are shown in the technical description of the dust-proof parts of each series.
- To insert the cap into the rail bolt hole, use a flat dolly block (Fig. 7.5). Pound the cap gradually until its height becomes flush with the rail top surface.
- You can reorder extra bolt hole caps. Sizes of the bolts and each model number of bolt-hole caps are shown in the technical description of the dust-proof parts of each series.
- Caps which are made of metal is also available upon request.

Fig. 7.5

(4) Inner seal

- The end seal installed on both ends of a slide cannot arrest entire contaminant, though the missed amount is negligible. An inner seal protects the rolling contact surface from such contaminant which entered inside the slide (Fig. 7.6).
- The inner seal is installed inside the slide. Therefore, the appearance in size and the shape are the same as the standard slide. (The inner seal is already installed before shipping.)
- It is strongly recommended to use the bellows and the double seal along with the inner seal to maintain the precision of the linear guide.
- Refer to **Table 7.1** for availability of inner seal.

Fig. 7.6 Inner seal when installed

[1] Installation of bellows NH and NS Series

* Fixing to the ball slide (Fig. 7.7)

- Remove two machine screws (M_2) which secure the end seals to the end of the slide (**Fig. 7.7**). For NS15, hold the end cap by hand. Otherwise, the end cap is detached from the ball slide, and the balls inside may spill out.
- Then insert a spacer to the hole for securing the end seal. Fasten the mounting plate at the end of the bellows to the slide with a slightly longer machine screw (provided with the bellows).

(5) Bellows

- A bellows covers entire linear guide. It has been used widely as a way of protection in an environment where foreign matters are prevalent.
- NSK has bellows exclusively for NH, NS, LW and LA Series. They have a middle bellows and a bellows at both ends. For NH Series, there are low and high type bellows which are in compliance with their slide types.
- The high type is used for AN and BN types. The low type is used for EM, GM, AL and BL types. The top of the high type bellows is slightly lower than the top surface of the slide.
- When a high type bellows is installed to the slide with the height code L (such as AL), the top of the bellows becomes higher than the slide. However, it is advantageous for stroke because the pitch of the bellows becomes larger than the low type.
- Special bellows are required when installing the linear guide vertically, or hanging it from a ceiling. Please consult NSK in such a case.
- When a bellows is used, please be advised that we cannot put a grease fitting on the end of slide to which the bellows is attached. If you require the grease fitting, it shall be put on the side of end cap or slide body. Consult NSK for details.
- For the dimension of bellows, please refer to the section of dust proof parts of each series.

* Fixing to the rail

- To install bellows for NH and NS Series, lightly knock a fastener exclusively for bellows to the end of the rail (Fig. 7.7). Then secure the mounting plate to the end of the bellows through the tap hole of the fastener.
- As described above, a bellows can be easily fixed to the end of the rail without adding a tap hole on the end of the rail.
- Bellows fastener is available only for the horizontal mounting positions. For other mounting positions, sliding plate is required (see Fig. 7.10 on page A56.)

For fixing to the rail, make tap holes to the rail end surface. Fix the bellows mounting plate to the rail end surface through these tap holes by using a machine screw. NSK processes a tap hole to the rail end face when ordered with a linear guide.

[2] LW and LA Series

- * Fixing to the ball slide (Fig. 7.8 and Fig. 7.9)
- Remove two machine screws which secure the end seal. (For LW17 and LW21, hold the end cap by hand while removing the machine screw. Otherwise, the end cap is detached from the slide, and the balls inside may spill over and fall.)
- Insert a spacer to the securing hole of the end seal, fasten the mounting plate on the end of the

bellows using a slightly longer machine screw (provided with the bellows).

- * Fixing to the rail
- Make two tap holes to the rail end surface. Fix the bellows mounting plate with machine screws to the rail end surface through these tap holes. NSK processes the tap holes to the rail end surface when ordered with a linear guide.

Calculating length of bellows

- The formula is as follows.
- A bellows forms one block (BL) with six folds as shown in **Fig. 7.10**. The stroke is determined by multiplying by an integer of this BL.
- · Length when stretched to the maximum length :

- Length when contracted to the minimum length :
 Lmin = 17 × Number of BL
- Stroke : St = Lmax Lmin
- The dimension of P and the number of BL are shown in the bellows dimension table of each series.

Fig. 7.10

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

A57

A-3-8 Rust Prevention (Stainless Steel and Surface Treatment)

1. Stainless steel

NSK linear guide is available in stainless steel. OStainless steel standard series PU Series PE Series LE Series Miniature LH Series LL Series OAvailable in stainless steel NH Series **NS Series** LU Series

Select from the above when using in the environments which invite rust.

2. Surface treatment

for cosmetic purpose.

(1) Recommended surface treatment

We recommend "low temperature chrome plating" and "fluoride low temperature chrome plating" for rust prevention because of the result of the humidity chamber test for antirust characteristics and their cost-effectiveness.

However, never apply any organic solvent to those treatments for degreasing because it has adverse effect on antirust characteristics.

Refer to the next page for the results of humidity chamber test.

Please consult NSK for other surface treatment.

OLow temperature chrome plating (Electrolytic rust prevention black treatment)

OFluoride low temperature chrome plating

- Fluoroplastic coating is provided following the low temperature chrome plating.
- · Used to prevent corrosion, light reflection, and · Resistance to corrosion is higher than electrolytic rust prevention film treatment.

(2) Rust prevention of fluoride low temperature chrome plating

The use environment of NSK linear guides is expanding from general industrial machines, semiconductor and liquid crystal manufacturing systems to aerospace equipment.

Among all measures to cope with environment, rust prevention is the most challenging. Such environment includes:

- · Moisture for washing machines and other equipment
- Chemicals used in the wet processing of semiconductor and liquid crystal display manufacturing equipment

NSK has developed electrolytic rust prevention black film treatment (black chrome plating) which is added by fluororesin impregnating treatment. (Hereinafter referred as "Fluoride low temperature chrome plating") This surface treatment methods has proved its superiority as the rust prevention of linear guides which are used in the above equipment.

What is "Fluoride low temperature chrome plating?"

This is a type of black chrome plating which forms a black film (1 to 2 µm in thickness) on the metal surface. Fluoroplastic coating is added to the film to increase corrosion resistance.

- Accuracy control is easily manageable due to low temperature treatment and to the absence of hydrogen embrittlement.
- Product accuracy is less affected due to the thin film which has high-corrosion resistance.
- This method is superior to other surface treatments in durability on the rolling surface.
- Inexpensive compared with products with other surface treatment and stainless steel products.

However, do not use organic solvent because it adversely affects antirust property of the plating.

Humid	lity chamber test Tabl	e 8.1 Results of	f the humid	ity test			
Character	Test sample	Fluoride low temperature chrome plating (Recommended)		Electroless nickel plating (Reference)	Equivalent to SUS440C material	Standard steel	
	Тор	(Ground) B	(Ground) B	(Ground) A	(Ground) C	(Ground) D	ľ
ĝ	Side	(Ground) A	(Ground) A	(Ground) A	(Ground) C	(Ground) E	
Rusting	Bottom	(Ground) A	(Ground) A	(Ground) A	(Ground) C	(Ground) E	
BL	End	(Machined) A	(Machined) C	(Machined) A	(Machined) C	(Machined) E	
	Chamfer/grinding recess	(Drawn) A	(Drawn) D	(Drawn) A	(Drawn) C	(Drawn) E	-
-resistant prop	st conditions> Testing chamber: High temperature, highly moist chamber ade by DABAI ESPEC) Temperature: 70°C Relative humidity: 95%	0	0	0	•	•	
- 40	Testing time: 96 h he to "ramp-up" and "ramp- wn" conditions of the nperature and the humidity		and the second se				

Ramp-up: 5 h Ramp-down: 2 h					
Film thickness	5 µm	0.5 – 7 μm	10 µm	—	—

Rusting A: No rust B: Not rusted, but slightly discolored

> C: Spotty rust D: Slightly rusted E: Completely rusted

Chemical corrosion resistance test

○: Normal △: Partial surface damage ▲: Overall surface damage ×: Corroded

Surface treatment durability test

Fig. 8.1 Results of durability test

Total evaluation

Table 8.3 Evaluation				
	Rust prevention ability	Quality stability	Durability	Cost
Fluoride low temperature chrome plating (recommended)	O	0	0	\bigcirc
Hard chrome plating (reference)	0	×	\bigtriangleup	\bigtriangleup
Electroless nickel plating (reference)	O	\bigtriangleup	×	\bigtriangleup
Material equivalent to SUS440C	0	O	\bigcirc	\bigtriangleup
©: Excellent		(): S	uitable	in use
riangle: Not so good for use		e ×: P	roblem	in use

A-3-9 Special Environment

- A-3-9 Special Environment 1. Heat-resistant specifications Standard linear guides use plastic for rolling element recirculation component. The maximum temperature in use for standard linear guides is 80°C.
- Use the linear guide with heat-resistant specifications under temperatures that exceed this limit.

Table 9.1 Comparison of materials: Standard and heat-resistant specifications

Component	Standard specification	Heat-resistant specification
Rail	Special high carbon steel (equivalent to SUS440C/JIS)	Special high carbon steel (equivalent to SUS440C/JIS)
Slide	Special high carbon steel (equivalent to SUS440C/JIS)	Special high carbon steel (equivalent to SUS440C/JIS)
Rolling elements	SUJ2, SUS440C	SUJ2, SUS440C
Retainer	Polyacetals	SUS304
Retaining wire	SUS304	SUS304
End cap	Polyacetals	SUS316L
Return guide	Polyacetals	SUS316L
End seal	Acrylonitril-butadiene rubber, SPC/JIS and stainless steel	Fluoro rubber, SPC/JIS and stainless steel
Bottom seal	Acrylonitril-butadiene rubber, SPC/JIS and stainless steel	Fluoro rubber, SPC/JIS and stainless steel

Heat resistant linear guides

NH Series	NS Series
LW Series	LU Series
LE Series	
See page A66 for the ava	ailability.

Bottom seal Rubber: fluoro rubber Ball retainer Stainless stee Ball slide body End cap Stainless ste End seal Rubber: fluoro rubbe

2. Vacuum and clean specifications

- Based on its abundant experience and technology, NSK manufactures linear guides that can be used in a vacuum or in clean environment. Please consult NSK for more details.
- ·Linear guide specifications vary for environmental conditions.
- For example, "all stainless steel plus special grease, or solid film lubricant is suitable" for vacuum environment.
- NSK has low-dust generating grease "LG2" which is ideal for clean environment. Refer to page A43 for details.

inear Guides

3. "NSK linear guides for food processing equipment and medical devices" for sanitary environment

Used with NSK K1 for food processing equipment and medical devices and grease for food processing equipment.

What is "NSK K1[™]" for food processing equipment and medical devices?

With an amazing innovation lubrication unit, the NSK K1 for food processing equipment and medical devices utilizing the US Food and Drug Administration (FDA) compliant material, provides reliability when used in food processing equipment and medical devices. The newly developed porous synthetic resin contains abundant lubricant.

With the basic function of highly praised NSK K1 lubrication unit for general industry, more sophisticated materials make it applicable in food and medical equipment.

It also offers easy installation: it is installed inside the standard end seal.

(1) Features

- 1) The highest grade of category H1 grease of USDA standard is used for NSK K1 lubrication unit.
- *category H1: Lubricants permitted for use where there is possibility of incidental food contact
- *USDA: USDA (The United States Department of Agriculture)

<Features of grease for food processing machines>

• This grease is approved by USDA H1. (National Science Foundation [NSF] carries out certification for USDA.)

- Superb water resistance and antirust capability
- Superb wear resistance
- Applicable for a centralized oiling system
- 2) Appropriate volume of grease

A supply of appropriate volume of grease reduces grease draining and scattering, and maintains a clean environment.

(2) Available models

 Table 9.2 shows available models.

	Table 9.2
NH Series	NH15, NH20, NH25, NH30 and NH35
NS Series	NS15, NS20, NS25, NS30 and NS35
LW Series	LW17, LW21, LW27 and LW35
PU Series	PU09, PU12 and PU15
LU Series	LU09, LU12 and LU15
PE Series	PE09, PE12 and PE15
LE Series	LE09, LE12 and LE15
Miniature LH Series	LH12

Precautions for use

To maintain optimal performance of NSK K1 lubrication unit over a long time, please follow the instructions below:

1. Temperatures range for use: Maximum temperature in use: 50°C

Momentary maximum temperature in use: 80°C

2. Chemicals that should not come to contact:

Do not leave NSK K1 lubrication unit in organic solvent, white kerosene such as hexane, thinner which removes oil, and rust prevention oil which contains white kerosene.

Note: Water-type cutting oil, oil-type cutting oil and grease such as mineral-type and ester-type do not damage NSK K1 lubrication unit.

4. Specifications for special environments

Table 9.3 Linear guide specifications

Environment	Condition	NSK linear guide specifications					
		,			LG2 Grease, LGU Grease	Page No. D8	
		Standard material	Standard material	Standard material	NSK K1 lubrication unit	D10	
	Atmosphere,				LG2 Grease, LGU Grease	D8	
Clean	normal temperature		Martensitic stainless steel		NSK K1 lubrication unit	D10	
oloun		Martensitic stainless steel		Austenitic stainless steel	Fluoride low temperature chrome plating	D5	
	Atmosphere–Vacuum, normal temperature Atmosphere–Vacuum up to 200°C				Fluoride grease		
	Atmosphere–Vacuum, normal temperature Atmosphere–Vacuum up to 200°C		Martensitic stainless steel		Fluoride grease		
Vacuum	Atmosphere–Vacuum up to 300°C	Martensitic stainless steel		Austenitic stainless steel	Molybdenum disulfide		
	High vacuum up to 500°C				Special silver film	D7	
		Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel			
	Vapor, steam			Standard material		D5	
	Acid, alkali	Standard material	Standard material		Fluoride low temperature chrome plating	D5	
			Martensitic stainless steel			D5	
Corrosion				Austenitic stainless steel	Fluoride low temperature chrome plating	D5	
resistance	Acid, alkali, clean	Martensitic stainless steel			LG2 Grease, LGU Grease	D8	
	Strong acid,				Fluoride low temperature chrome plating	D5	
	strong alkali				Fluoride grease		
	Organic solvent				Fluoride grease		
High temperature	Atmosphere	Standard material	Standard material				
	up to 150°C				ET-100K Grease		
	Atmosphere Up to 200°C	Martanaitia atainlaga ataol	Martensitic stainless steel	Austenitic stainless steel	Fluoride grease		
	Atmosphere Up to 200°C,	iviartensitic stanness steer			FI		
	Corrosion resistant				Fluoride grease		
Low temperature	-273°C and higher	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Solid lubricant		
Radiation	Atmosphere	Standard material	Standard material	Standard material	Radiation resistant grease		
resistance	Atmosphere	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	nduldlioli resistant grease		
Foreign	Fine particles,	Standard material	Standard material	Standard material		D10	
	wooden chips		Martensitic stainless steel	Austenitic stainless steel	NSK K1 lubrication unit	D10	
matters	Water,	Martensitic stainless steel	Standard material	Standard material		D10	
	under water		Martensitic stainless steel	Austenitic stainless steel		D10	

Inear

5. Lubrication and materials

(1) Lubrication

Grease can be used for high rotation and magnetic field. However, grease evaporates or solidifies in special environment such as vacuum, high temperature, and low temperature. Solid lubricant is used when it is difficult to use grease. Functions of solid lubricant differ greatly by condition where it is used. It is important to select the most suitable solid lubrication for the environment.

Fig. 9.2 Lubrication in clean environment

10

10⁸

Special lubricating oils, greases

Solid lubricants

10°

Fig. 9.4 Lubrication in corrosive environment

Fig. 9.6 Lubrication in low temperature Fig. 9.7 Lubrication in radioactive environment

Ordinary

lubricating

oils, greases

10⁵

10⁶

Fig. 9.8 Temperature range for using solid lubricants

10¹⁰Rad

(2) Materials

Iron type metals are used in vacuum, high temperature, and high speed environments as the basic material. We generally use nonmagnetic stainless steel for nonmagnetic materials.

Table 9.4 Characteristics of metal materials

Application	Type of steel	Linear expansivity ×10 ⁻⁶ /°C	Young's modulus GPa	Hardness * HB
For clean environment,	Martensitic stainless steel SUS440C	10.1	200	580
vacuum environment, corrosion resistance, low temperature,	Austenitic stainless steel SUS304	16.3	193	150
high temperature, radioactive resistance	Precipitation hardened stainless steel SUS630	10.8	200	277 – 363
Nonmagnetic	Nonmagnetic stainless steel	17.0	195	420

*) Hardness of steel is usually indicated by Rockwell C Scale. For comparison, these figures are expressed by Brinell number.

6. Responsiveness of NSK linear guides for special environments

S	Model No.	Special environment which linear guide can tolerate					
Series		Clean					High dust proofing
	NH15	0		0		0	
	NH20	0	0	0	0	0	
	NH25	0	0	0	0	0	
NH	NH30	0	0	0	0	0	
	NH35	0		0	0	0	
	NH45	0		0	0		
	NH55	0		0			
	NH65	0		0			
	VH15	0		0			0
	VH20	0		0			0
	VH25	0		0			0
VH	VH30	0		0			0
	VH35	0		0			0
	VH45	0		0			0
	VH55	0		0			0
	TS15	0		0			
	TS20	0		0			
тs	TS25	0		0			
	TS30	Ó		Ó			
	TS35	Ó		Ó			
	NS15	0	0	Ó	0	0	
	NS20	0	0	0	0	0	
NS	NS25	0	0	0	0	0	
	NS30	0	0	0)*	0	
	NS35	0		0		0	
	LW17	0		0)*	0	
	LW21	0		0)*	0	
LW	LW27	Ó		0	0	0	
	LW35	0		0		0	
	LW50	0		0			
PU	PU05	0		0			
	PU07	0		0			
	PU09	0		0		0	
	PU12	Ó		Ó		0	
	PU15	0		0		0	
LU	LU05	0		Ó			
	LU07	Õ		Õ			
	LU09 L	Ó	0	Ó	0	0	
	LU09_R	Õ		Õ		Õ	
	LU12 L	ŏ	0	ŏ	0	Ŏ	
	LU12 R	Õ		Õ	~	Õ	
	LU15	ŏ	0	Ŏ	()*	Õ	

ies		Special environment which linear guide can tolerate						
Series	Model No.	Clean	Vacuum	Corrosion	High temp.	Hygienic	High dust proofing	
	PE05	0		0				
	PE07	0		0				
PE	PE09	0		0		0		
	PE12	0		0		0		
	PE15	0		0		0		
	LE05	0		0				
	LE07	0	0	0	*			
	LE09_L	0	0	0	*	0		
LE	LE09_R	0		0		0		
LE	LE12_L	0	0	0	0	0		
	LE12_R	0		0		0		
	LE15_L	0	0	0	0	0		
	LE15AR	0		0		0		
Miniature LH	LH08	0		0				
ati	LH10	0		0				
ŝ.	LH12	0		0		0		
	RA15	0		0				
	RA20	0		0				
	RA25	0		0				
RA	RA30	0		0				
	RA35	0		0				
	RA45	0		0				
	RA55	0		0				
	RA65	0		0				
	LA25	0		0				
	LA30	0		0				
LA	LA35	0		0				
	LA45	0		0				
	LA55	0		0				
	LA65	0		0				
	HA25	0		0				
	HA30	0		0				
	HA35	0		0				
	HA45	0		0				
	HA55	0		0				
	HS15	0		0				
	HS20	0		0				
	HS25	0		0				

*) Applicable except for the dust-proofing parts.

7. Precautions for handling

Please observe the following precautions to maintain high functions of NSK linear guide.

- Products are washed to remove oil, and wrapped in a way to protect them from moisture. Use the product as soon as possible after opening the package.
- After opening, store the products in a clean, air-tight container such as desiccater with desiccating agent (e.g. silica gel). Do not apply rust preventive oil or an antirust paper that vaporizes rust preventive agent.
- Wear plastic gloves and handle product in a clean place.

Note: Please refer to the catalog "CAT. No. E1258 SPACEA" for the details of special environmental use.

A-3-10 Arrangement and Mounting of Linear Guide

1. Arrangement

- For NSK linear guides, the datum surfaces of the rail and of the slide are either marked with a "datum surface groove" or with an "arrow."
- In case that two or more linear guides are used together, one linear guide is designated as a reference side guide, and the rest is adjusting side guide(s). The reference side linear guide has its reference number, serial number, and "KL" mark on the opposite side of the datum surface (Fig. 10.1).
- When the datum surfaces of the reference side rail and slides are pressed to their mounting datum surfaces respectively, the variation of distance (mounting width W₂ or W₃) between the datum surfaces of the rails and that of the slides must be a minimum and therefore, it is specified as the standard. (Figs. 10.2 and 10.3)
- The ways to indicate the datum surfaces of each series are shown in **Table 10.1**.

Fig. 10.1 Datum surface

Example of arrangement

• The arrangement of the linear guides must be determined taking into account the table mounting position (horizontal, vertical, inclined, or upside-down), strokes and the size of the machine base to which the table is mounted. **Table 10.2** shows common arrangement examples and their properties (features/ precautions).

Fig. 10.2 Most common setting of the reference side rail

Fig. 10.3 Setting of the reference side rail in certain occasions

2. Mounting accuracy

(1) Accuracy of the mounting base of machine

- The mounting accuracy of linear guide usually copies the accuracy of the machine base.
- However, when two or more slides are assembled to each rail, the table stroke becomes shorter than the mounting surface. This, along with the fact that the mounting error is evenly spread, contributes to a higher table accuracy than the mounting surface accuracy, reducing the error to about 1/3 in average (Fig. 10.4).

(2) Installation error

• Mounting error affects mainly three factors: life, friction and accuracy (**Table 10.3**).

Fig. 10.4

Stroke

Table 10.3 Influence of mounting error

Factor	Influence				
Life	Rail Deviation	 Large mounting error generates a force which twists the slide and reduces its life. It also distorts the contact point of the ball and the groove, and changes contact angle, thus lowering the table rigidity. 			
Friction	8000 000000000000000000000000000000000	 NH and NS Series are affected very little by mounting error thanks to their small friction. (self aligning capability) However, because of off-set Gothic arch grooves, their friction suddenly soars once the mounting error exceeds a certain level. The mounting error severely affects friction of LA Series with heavy preload. 			
Accuracy		 When the rigidity of four slides is equal, the theoretical straightness becomes 1/2 of the installation error "e₁". However, this value becomes slightly larger due to the deformation of the rail and the machine base. 			

(3) Permissible values of mounting error

 Among the three factors of life, friction, and accuracy, which are affected by the mounting error, NSK focuses on the life factor to determine the permissible mounting accuracy. The specifications are based on the following conditions. For ball linear guides

- The permissible load per ball slide due to the mounting error is 10% of the basic dynamic load rating C_{50} .
- The rated life is 5 000 km.
- The rigidity of the machine base is infinite.

For roller linear guide

- The permissible load per roller slide due to the mounting error is 10% of the basic dynamic load rating C_{100} .
- The rated life is 10 000 km.
- The rigidity of the machine base is infinite.
- C_{50} ; Basic dynamic load rating for 50 km rated fatigue life
- $\textit{C}_{\text{\tiny 100}}$; Basic dynamic load rating for 100 km rated fatigue life
- Figs. 10.5 and 10.6 are representing the mounting errors of e_1 and e_2 . Their permissible values are shown in the description of "5. Installation" of the each series.

Fig. 10.5

Fig. 10.6
3. Installation

(1) Shoulder height of the mounting surface of the machine base and corner radius r

• Figs. 10.10 and 10.11, show shoulder height of the mounting surface of the machine base and the size of corner radius. These figures are relevant when the linear guide is pressed to the shoulder of the machine base or table (the raised section from where the mounting surface begins), and horizontally secured to it. Recommended sizes are shown in the clause of "Shoulder height and corner radius r" of each series introduction.

• The shoulder should be thick (wide) enough, so it is not deformed by the pressing force.

(2) Tightening torque of the bolt

- **Table 10.4** shows tightening torque of the bolt when the rail is secured to the fixture of race way grinding machine.
- Apply same torque in this table when securing the rail to the machine base. Equal accuracy at the time of grinding can be obtained.

Table 10.4 Bolt tightening torque (Bolt material: High carbon chromium steel)

Linite Nime

			Unit: N·m
Bolt size	Tightening torque	Bolt size	Tightening torque
M2.3	0.38	M10	43
M2.5	0.58	M12	76
M3	1.06	M14	122
M4	2.5	M16	196
M5	5.1	M18	265
M6	8.6	M22	520
M8	22	_	_

(3) Installation procedures

 There are two installation ways depending on the accuracy requirement.

a. Installation with high accuracy

b. Accuracy is not high, but easy to install

• For both methods, wipe off the rust preventive oil applied to the linear guide. Remove burrs and small bumps on the machine base and table mounting surface with an oilstone (**Fig. 10.12**).

Apply machine oil or similar oil with low viscosity to the mounting surface to increase the rust preventive effect.

• Linear guides are precision products. Handle them with care.

(4) Running accuracy and the influence of even-off effect

 When mounting on a machine base, the linear guide is affected by the flatness of the mounting surface. However, in the case of two-rail/four-slide specification, which is most widely used, the straightness as a table unit is generally less than the straightness as a single component. This is due to the even-off effect generated by the shorter table stroke,

compared to the rail length, as well as by

• Fig. 10.9 shows an actually measured

straightness of the table which uses NSK linear

guides. In this case, the final straightness of

the table is about 1/5 of the straightness of the

interaction between the rails and slides.

mounting surface.

Pitchin

Fig. 10.9 Straightness of the table equipped with linear guide

Oil stone

Fig. 10.12

inear Guides

1) Highly accurate installation

A) Rail installation procedures

- a) When the machine base has a shoulder for the reference side rail.
- [1] Confirm that the rail is reference side rail, and the datum surface of the rail comes to face to face with the shoulder of the machine base. Keep the slides on the rail, and carefully place the rail on the machine base on its mounting surface. Loosely tighten the bolts. At this time, press the rail from sideways to make the rail tightly contact to the shoulder of the machine base. When using a shoulder plate, refer to **Table 10.4** for the bolt tightening torque (**Fig. 10.13**).

Refer to "4. Various methods to press linear guide sideways."

[2] For final tightening of the bolts to secure the rail, tighten the bolt on either end of the rail, then proceed to other end.

If the datum surface is on the left side as shown in **Fig. 10.14**, tighten the bolt at the farthest end first, then proceed to the near end.

This way, creates a bolt rotating force that presses the rail against the shoulder. (Therefore, the rail is pressed sufficiently tight against the shoulder by merely pressing the rail by hand. However, if there is a possibility applying a lateral impact load, it is necessary to use a shoulder plate to prevent the rail from slipping.)

- [3] If the mounting surface of the machine base where the adjusting side rail is installed also has a shoulder, repeat the steps [1] - [2].
- [4] If there is no shoulder on the mounting surface of the machine base for the adjusting side rail: Secure a measuring table to the slides of the reference side rail (Fig. 10.15). Use this to adjust the parallelism of the adjusting side rail. Check parallelism of the adjusting side rail with a dial indicator from one end of the rail, tightening the bolts one by one.

The measuring table is more stable if secured to two slides, but one slides is sufficient. Parallelism between two rails can also be checked by the same method in **Fig. 10.15** when there is a shoulder on the surface where the adjusting side rail is installed.

Fig. 10.13 Pressing the rail from sideways

Fig. 10.14 Rail installation

Fig. 10.15 Measuring parallelism

- b) When the machine base does not have a shoulder on the side where the reference side rail is installed
- [1] Carefully place the reference side rail on its mounting surface of the machine base. Loosely tighten the bolts. Do not tighten the bolts all the way, but stop tightening when the bolt enters halfway into the bolt hole. This makes the proceeding steps easier.
- [2] Place the straight edge almost parallel to the reference side rail which is temporarily secured by the bolts. (At both ends of the rail and straight edge, the distance between them shall be almost same.)
- [3] Once the position of the straight edge is determined, use it as the reference. With a dial indicator, check parallelism with the rail, and adjust the rail if necessary. Then tighten the bolts.

Ensure that the straight edge does not move while the bolts are being tightened.

This procedure should be carried out starting from one end of the rail to the other end (**Fig. 10.16**).

[4] Finally tighten all bolts with specified torque.[5] There are two ways for installation of adjusting side rail:

1. Based on the straight edge which is used for reference side rail installation

2. Based on the reference side rail which is installed prior to the adjusting side rail. In both cases, use a dial indicator to measure

parallelism. Other procedures are the same as [1] - [4] above, and the [4] for the case where there is a shoulder on the machine base.

B) Procedures for slide installation

a) When the table has a shoulder

- [1] Arrange the slides so that locations match to their mounting section of the table. Carefully place the table on the slides. Loosely tighten all bolts.
- [2] While pressing the table from sideways, further tighten the bolts which secure the slides on the reference side, so the table shoulder and the slide's mounting datum surface are sufficiently tightly pressed. If a shoulder plate is provided, first tighten the bolts of the plate, then further tighten the bolts to the slides (Fig. 10.17).

Fig. 10.16

Fig. 10.17 Pressing slide from sideways

[3] Then, further tighten the bolts for slides on the adjusting side rail.

Move the table by hand to confirm that there is no abnormality such as excessive friction force during stroking. (This confirms that the correct installation steps were taken.)

[4] Finally, tighten all bolts with standard torque.

b) When table does not have a shoulder

- [1] Arrange the slides so that locations match to their mounting section of the table. Carefully place the table on the slides. Loosely tighten bolts to secure the slides.
- [2] Since the table does not have a shoulder, immediately tighten the bolts further to secure slides.
- [3] Move the table by hand to confirm that there is no abnormality. Finally, tighten all bolts with the specified torque.

2) Easy installation

- [1] Carefully place the reference side rail on the machine base. Then tighten the bolts to the specified torque.
- [2] Loosely tighten the bolts on the adjusting side rail.
- [3] Tighten the slides on the reference side rail and one slide on the adjustment side rail with the specified torque. Leave the rest of the slide on the adjusting side rail loosely tightened (Fig. 10.18).
- [4] While moving the table with each pitch of the bolt for rail: With the specified torque, tighten the rail mounting bolt which is located immediately adjacent to the slide on the adjusting side rail that had been firmly tightened.

Take this procedure from one end to the other.

[5] Return the table to the original position once. Then, tighten the rest of the slides on the adjusting side to the specified torque. By the same procedure as in [4], tighten the rest of the rail mounting bolts to the specified torque. Move the table to check any abnormality such as large friction force.

Fig. 10.19 Recommended method

Fig. 10.20 Installation that requires caution

Fig. 10.21

•This method is most widely used, and 💆 generally recommended. The slides and the rail should protrude slightly from the sides of the table and the machine base. The shoulder plate should have a recess, so that the corners of the rail and slide do not touch the shoulder plate.

- · A tapered block is squeezed in. However, the slightest tightening of the bolt generates a large pressing force to the side. Too much tightening may cause the rail to deform, or the land (shown in the figure left) to warp to the right. This method requires caution.
- . The bolt that presses rail must be thin due to limited space.

· Press a needle roller with a taper section of the head of a slotted pan head screw. Watch out for the position of the screw.

Fig. 10.18 Easy installation

ar Guide

4. Assembly random-matching type linear guide

- Slides of random-matching type are assembled on a provisional rail (an inserting tool) when it is delivered (**Fig. 10.23**).
- NSK standard grease is packed into the slide, allowing immediate use.

Assembly procedures of a random-matching type linear guide

Follow steps as described below.

- (1) Wipe off the rust preventive oil from the rail and slide.
- (2) Please match a groove mark for the datum surface of slide and rail to set a desired assembling state W₂ or W₃.
- (3) Align the provisional rail to the rail in the bottom and side surfaces. Press the provisional rail lightly against the rail, and move the slide over the rail (Fig. 10.23).

Fig. 10.23 Inserting slide into the rail

Fig. 10.24

5. Butting rail specification

- A rail which requires the length that exceeds the machine capacity manufactured maximum length comes in butting specification.
- The rails with butting specification are marked with alphabet (A, B, C ...) and an arrow on the opposite side of the mounting datum surface. Use the alphabets and arrows for assembly order and direction of the rail (**Fig. 10.25**).

The random-matching rails for butting specification are only marked with the arrows.

- The pitch of the rail mounting hole on the butting section should be as F in **Fig. 10.26**. When two rails are used in parallel, the butted sections should not align. This is to avoid change in the running accuracy of the table at the butted sections.
- We recommend shifting the butting sections more than the length of a slide. If the higher running accuracy is required, consider installing the slides into the table so that they do not simultaneously pass the butting sections.

Fig. 10.25

Fig. 10.26

6. Handling preloaded assembly

- In case of the preloaded assembly (not random-matching type), do not remove slides from the rail as a general rule.
- If it is unavoidable to remove slides from the rail, make certain to use a provisional rail (a jig used to insert a slide to the rail) as shown in Fig. 10.27.
- The provisional rails for each series and sizes are available.
- Pay due attention to the assembly mark when returning the slide back to the rail. Follow the cautions described below.

Mark for assembling ball slide and rail

- Rails of preloaded assembly (not randommatching type) are marked with a reference number and a serial number on the opposite of the datum surface.
- Slides to be combined are also marked with the same serial number (the reference number is not marked).
- Furthermore, slides are marked with an arrow.
 Slides should be positioned with their arrows facing each other.
- In case that the slides had to be removed from the rail, confirm their serial numbers and the directions of arrows for re-assembly (Fig. 10.28).
- When two or more rails are used in a single set, serial numbers are in sequence if their reference numbers are the same. The linear guide with smallest serial number has the "KL" mark (Fig. 10.29).
- When two or more rails of different reference number are used in a single set, the rails and slides have the same serial number. In this case, when slides are removed from the rail, it is unclear which rail each slide was previously installed on. When removing ball slides from the rail for an unavoidable reason (**Fig. 10.30**), sufficient precaution is required.

Fig. 10.27

Fig. 10.28

Fig. 10.29 When two rails have the same reference number

Fig. 10.30 When two rails have different reference number

inear Guides.

A-3-11 Drills to Select Linear Guide

1. Single axis material handling system

This section explains the selection of linear guide, life calculation, and deformation at load acting point for a single axis material handling system equipped with linear guides.

Fig. 11.1 Single axis material handling system

The work load is applied only to one way of stroke. Assume that the load is acting in full stroke as the condition of acting load is unknown. Specification of the single axis material handling system

Table weight	W1 : 150 (N)
Weight of the work	W2 : 200 (N)
Acting load	F : 200 (N)
Ball slide span	L _b : 100 (mm)
Rail span	L _r : 90 (mm)

Load point coordinates from the table center (mm)

Load	X axis	Y axis	Z axis
W1	30	-20	20
W2	80	-90	120
F	-50	-135	30

Stroke: 1 000 mm (1 cycle: 2 000 mm)

Environment	: 10 – 30 (°C)
Travel speed	: 12 (m/min)
Time to reach travel speed	: 0.25 (sec)
Operating hour	: 16 (hr/day)

(1) Selection of linear guide model

Select a type of linear guide from "A-1-2 Structure and Characteristics of Linear Guide." Since this material handling system has two rails and four ball slides, NH, NS, and PU Series are suitable.

Here, we temporary select PU15 because of the dimensions of mounting space.

(2) Calculating life

Calculate life of the selected PU15AL based on "A-3-2 Rating Life and Basic Load Rating." Linear guide PU15AL

Basic dynamic load r	rating	C ₁₀₀	: 4 400 (N)		
Basic static load rating			: 6 600 (N)		
Load conditions of the linear guide					
Table weight	W1:	150	(N)		
Weight of the work	W2 :	200	(N)		
Applied load	F :	200	(N)		

Rail span L_r : 90 (mm)

Ball slide span $L_{\rm b}$: 100 (mm)

From the time to reach travel speed and the travel speed, the table acceleration is 0.8 m/sec². Therefore, it is not necessary to take into account inertial force brought about by the table mass.

Calculation of the load applied to ball slide

Calculate two occasions:

- 1. There is the work mounted on the table.
- 2. No work mounted on the table.

From Pattern 4 on page A19 in Table 2.2

When a work is mounted on the table Vertical loads

$$1 = \sum_{j=1}^{n} (F_{yj} \cdot Z_{yj}) + \sum_{k=1}^{n} (F_{zk} \cdot Y_{zk})$$

= $F \cdot Z_3 + W 1 \cdot Y_1 + W 2 \cdot Y_2$
= $-200 \times 30 + 150 \times (-20) + 200 \times (-90)$
= $-27\ 000\ (N \cdot mm)$

$$M2 = \sum_{i=1}^{n} \left\{ F_{xi} \cdot (Z_{xi} - Z_b) \right\} + \sum_{k=1}^{n} \left(F_{zk} \cdot X_{zk} \right)$$

= W1 · X₁ + W2 · X₂
= 150 × 30 + 200 × 80
= 20 500 (N·mm)

$$F_{r1} = \frac{\sum_{k=1}^{n} F_{zk}}{4} + \frac{M1}{2 \cdot L} + \frac{M2}{2 \cdot \ell}$$
$$= \frac{W1 + W2}{4} + \frac{M1}{2 \cdot L_r} + \frac{M2}{2 \cdot L_b}$$
$$= \frac{150 + 200}{4} + \frac{-27\ 000}{2 \times 90} + \frac{20\ 500}{2 \times 100}$$
$$= 40\ (N)$$

Similarly $F_{r^2} = -165(N)$ $F_{r^3} = 340(N)$ $F_{r^4} = 135(N)$

М

Lateral loads

inear Guides

Similarly $F_{s2} = F_{s4} = -100(N)$

No work mounted on the table Vertical load

$$M1 = \sum_{j=1}^{n} (F_{yj} \cdot Z_{yj}) + \sum_{k=1}^{n} (F_{zk} \cdot Y_{zk})$$

= $F \cdot Z_3 + W1 \cdot Y_1$
= $-200 \times 30 + 150 \times (-20)$
= $-9\ 000\ (N \cdot mm)$

$$M2 = \sum_{i=1}^{n} \left\{ F_{xi} (Z_{xi} - Z_b) \right\} + \sum_{k=1}^{n} (F_{zk} \cdot X_{zk})$$

= W1 · X₁
= 150 × 30
= 4 500 (N·mm)

$$F_{r1} = \frac{\sum_{k=1}^{n} F_{2k}}{4} + \frac{M1}{2 \cdot L} + \frac{M2}{2 \cdot 1}$$
$$= \frac{W1}{4} + \frac{M1}{2 \cdot L_r} + \frac{M2}{2 \cdot L_b}$$
$$= \frac{150}{4} + \frac{-9\ 000}{2 \times 90} + \frac{4\ 500}{2 \times 100}$$
$$= 10\ (N)$$

Similarly

 $F_{r_2} = -35$ (N) $F_{r^3} = 110$ (N) $F_{r_4} = 65 (N)$

Lateral loads $M3 = -\sum_{i=1}^{n} \left\{ F_{xi} \cdot \left(Y_{xi} - Y_{b} \right) \right\} + \sum_{i=1}^{n} \left(F_{yi} \cdot X_{yi} \right)$ $= F \cdot X_3$ $= -200 \times (-50)$ = 10 000 (N·mm)

 $F_{s1} = F_{s3} = \frac{\sum_{j=1}^{n} F_{yj}}{4} + \frac{M3}{2 \cdot 1}$ $=\frac{F}{4}+\frac{M3}{2\cdot L_b}$ $=\frac{-200}{4}+\frac{10\ 000}{2\times100}$ = 0 (N)

Similarly $F_{s2} = F_{s4} = -100 (N)$

For calculation, take into consideration the positive or negative signs (+ or -) for load point coordinates.

Calculation of dynamic equivalent load Use "A-3-2.2 3. Calculation of dynamic equivalent load."

It matches Position 4 in "Table 2.3 Loads in the arrangement of linear guides." Ball slide loads that must be considered are vertical and lateral direction loads.

In case of PU15AL,

Vertical direction dynamic equivalent load $F_{r} = F_{r}$

Lateral direction dynamic equivalent load $F_{\infty} = F_{\infty} \cdot \tan \alpha = F_{\infty}$

Use the formula for full dynamic equivalent load (page A23) to calculate F_{e} . Results are shown in the table below.

				Unit: N
Work mounted	Slide1	Slide2	Slide3	Slide4
$F_{r} (F_{r1} - F_{r4})$	40	- 165	340	135
$F_{se} (F_{s1} - F_{s4})$	0	- 100	0	– 100
F _e	40	215	340	185
No work mounted	Slide1	Slide2	Slide3	Slide4
$F_{\rm r} (F_{\rm r1} - F_{\rm r4})$	10	- 35	110	65
$F_{\rm se}$ ($F_{\rm s1} - F_{\rm s4}$)	0	- 100	0	- 100
F	10	118	110	133

Based on the results of calculations, a ball slide that bears the maximum dynamic equivalent load shall be taken as the representative of the linear guides for further life calculation. For this case, we take the Slide3.

Therefore; Work mounted $F_{e1} = 340$ (N)

No work mounted $F_{n2} = 110$ (N)

Calculation of mean effective load

Based on "A-3-2.2 4. Calculation of mean effective load," calculate from the largest full dynamic equivalent loads.

10 (IN)

From the cycle pattern, the mean effective load matches the case "(1) When load and running distance vary stepwise." Therefore, use the following formula.

Assuming that L is: $L = L_1 + L_2$.

$$Fm = \sqrt[3]{\frac{1}{L} \left(F_{e_1}^3 L_1 + F_{e_2}^3 L_2\right)}$$

= $\sqrt[3]{\frac{1}{2\ 000} \left(340^3 \times 1\ 000 + 110^3 \times 1\ 000\right)}$
= 273 (N)

Determine various coefficients

Determine applicable coefficients from "A-3-2.2

5. Various coefficients."

Load factors

Use conditions are: Travel speed, 12 m/min; Acceleration, 0.8 m/sec² (0.082 G). As the load factor f_w is in the range of 1.0 to 1.5, use common value $f_w = 1.2$.

Hardness coefficient

The hardness of NSK linear guides is HRC58 to 62. Use a hardness coefficient $f_{\rm H} = 1$ and take the value of basic dynamic load rating as it is.

Calculate rating life

Use "A-3-2.2 6. Calculation of basic rating life." The basic dynamic load rating (C_{100}) of linear guide PU15AL : 4 400 (N) Mean effective load F_m : 273 (N) Load factor f_w : 1.2 Hardness coefficient f_H : 1

Rating fatigue life
$$L = 100 \times \left(\frac{f_{H} \cdot C_{100}}{f_{w} \cdot F_{m}}\right)^{3}$$

= $100 \times \left(\frac{1 \times 4400}{1.2 \times 273}\right)^{3}$
= approximately 242 280 (km)

Travel speed, 12 m/min; Operating hours, 16 hr/day.

```
Convert the above rating fatigue life into hours:

\frac{242\ 280\times 1\ 000}{12\times 60\times 16} = approximately\ 21\ 030\ (days)
```

Examine static load

Based on "A-3-2.2 7. Examination of static load," find out on which ball slide the static equivalent load P_0 becomes largest. The basic static load rating (C_0) of linear guide PU15AL: 6 600 (N) Ball slide No. 3 bears the largest load. P_0 at this time: $P_0 = F_r + F_s = 340$

Therefore, static permissible load coefficient fs is:

$$f_{\rm S} = \frac{C_0}{P_0} = \frac{6\ 600}{340} = 19.4$$

There is no problem at this value.

(3) Selection of accuracy grade and preload

Based on "A-3-4 3. Application examples of accuracy," select accuracy grade PN and preload Z1 for material handling system.

(4) Calculation of deformation

Calculate deformation by the weight of the mounted work W_2 . From "Rigidity of PU series," the rigidity of linear guide PU15AL with Z1 preload is:

 $K_{\rm s} = K_{\rm r} = 45$ (N/µm) = 45 000 (N/mm) Deformation by the weight of the mounted work W_2 can be obtained as the difference in deformation when W_2 applies or does not apply.

From Pattern 4 in Table 2.2 (page A19) Work mounted:

$$\begin{split} \delta_{x1} &= Y_d \cdot \frac{F_{s2} - F_{s1}}{L_b \cdot K_s} + Z_d \cdot \frac{F_{r1} - F_{r2}}{L_b \cdot K_r} \\ &= -90 \times \frac{-100 - 0}{100 \times 45\ 000} + 120 \times \frac{40 - (-165)}{100 \times 45\ 000} \\ &= 0.0075\ (\text{mm}) = 7.5\ (\mu\text{m}) \end{split}$$

Similarly, $\delta_{y1} = -0.0082 \text{ (mm)} = -8.2 \text{ (}\mu\text{m)}$ $\delta_{z1} = -0.0123 \text{ (mm)} = -12.3 \text{ (}\mu\text{m)}$

No work mounted:

$$\delta_{x2} = Y_{d} \cdot \frac{F_{s2} - F_{s1}}{L_{b} \cdot K_{s}} + Z_{d} \cdot \frac{F_{r1} - F_{r2}}{L_{b} \cdot K_{r}}$$
$$= -90 \times \frac{-100 - 0}{100 \times 45\ 000} + 120 \times \frac{10 - (-35)}{100 \times 45\ 000}$$
$$= 0.0032\ (mm) = 3.2\ (\mu m)$$

Similarly, $\delta_{y_2} = -0.0023 \text{ (mm)} = -2.3 \text{ (µm)}$ $\delta_{z_2} = 0.0039 \text{ (mm)} = 3.9 \text{ (µm)}$ Therefore, the difference in deformation by whether there is a mounted work or not is as follows: $\delta_x = \delta_{x_1} - \delta_{x_2} = 7.5 - 3.2 = 4.3 \text{ (µm)}$ $\delta_y = \delta_{y_1} - \delta_{y_2} = -8.2 - (-2.3) = -5.9 \text{ (µm)}$ $\delta_z = \delta_{z_1} - \delta_{z_2} = 12.3 - 3.9 = 8.4 \text{ (µm)}$

2. Machining center

The following is a calculation example of a horizontal type machining center. Arrangements of each axis are shown in **Fig. 11.2** (front view) and **Fig. 11.3** (side view).

Operating conditions

Dimensions and load conditions are: X axis column's weight Wx:7500(N) Y axis spindle head's weight Wy : 2 500 (N) Wz: 5 500 (N) Z axis table's weight X axis rail span XL : 450 (mm) X axis ball slide span XL: 310 (mm) Y axis rail span YL,: 410 (mm) Y axis ball slide span YL_b: 308 (mm) ZL,: 660 (mm) Z axis rail span Z axis ball slide span ZL_b: 420 (mm)

X axis stroke : 400 (mm) Y axis stroke : 350 (mm) Z axis stroke : 500 (mm)

	[Max. 30 (m/min)]
Starting accelerating speed	: 1 (G)
Milling speed	: 2.5 (m/min)
Drilling speed	: 0.8 (m/min)
Cutting load	
Milling process	$Fx = Fy = 1\ 000\ (N)$
Drilling process	Fz = 3 000 (N)

Average rapid traverse speed : 15 (m/min)

NSK

LY axis ball screw ∮δy 323 30 δz 308 Ŵу 160 336 to 686 Wx 510 70 450 15 210 Z axis X axis ball screw 220 Wz 120 Z axis ball screw 420

Fig. 11.3 Machining center (side view)

Fig. 11.2 Machining center (front view)

Fy Fz

Y axis stroke

(1) Selection of linear guide model

From the operating conditions, the linear guide should be LA Series which is suitable for the machining center.

Select below temporarily from shaft diameter of ball screw:

X axis LA55 Y axis LA35 Z axis LA65

(2) Selection of accuracy grade and preload

For machining center, select accuracy grade P5 and preload Z3.

(3) Calculation of life expectancy

Examination shall be done in three cases, no cutting load, milling process, and drilling process.

Inertial force associated with the starting acceleration is not considered in this case. However, it must be calculated for more accurate figures.

Calculation of the loads that apply to the ball slide In case of no cutting load: Fx = Fy = Fz = 0Calculate load on X, Y, Z axes using "Table 2.2" in "A-3-2.2 2. Calculating load to a ball slide." X axis: Loads to be considered Wx and Wy Y axis: Loads to be considered Wy Z axis: Loads to be considered Wx, Wy, and Wz

					Unit: N
Axis	Load direction	Slide1	Slide2	Slide3	Slide4
X axis	Vertical direction Fr	1 156	955	4 045	3 844
A 8215	Lateral direction Fs	0	0	0	0
Y axis	Vertical direction Fr	122	-122	122	-122
1 4215	Lateral direction Fs	102	-102	102	-102
Z axis	Vertical direction Fr	765	3 860	3 890	6 985
2 0.15	Lateral direction Fs	0	0	0	0

In case of milling process: Fx = Fy = 1000 (N) Similarly,

X axis: Loads to be considered Wx, Wy, Fx, and Fy Y axis: Loads to be considered Wy, Fx, and Fy Z axis: Loads to be considered Wx, Wy, Wz, Fx,

and Fv

The table below shows the calculation of each load coordinates at stroke end which imposes most strict condition.

and <i>r</i> y					
					Unit: N
Axis	Load direction	Slide1	Slide2	Slide3	Slide4
X axis	Vertical direction Fr	2 277	-1 039	6 539	3 224
	Lateral direction Fs	997	-997	997	-997
Y axis	Vertical direction Fr	252	-1 040	1 040	-252
1 0/15	Lateral direction Fs	54	-554	54	-554
Z axis	Vertical direction Fr	-771	3 796	4 453	9 020
2 dx15	Lateral direction Fs	486	-986	486	-986

In case of drilling process: Fz = 3 000 (N)

X axis: Loads to be considered Wx, Wy, and Fz Y axis: Loads to be considered Wy and Fz Z axis: Loads to be considered Wx, Wy, Wz, and

The table below shows calculation of each load coordinates at a stroke end which imposes most strict condition.

	F		Unit: N		
Axis	Load direction	Slide1	Slide2	Slide3	Slide4
X axis	Vertical direction Fr	4 256	4 055	945	744
7 6715	Lateral direction Fs	919	581	919	581
Y axis	Vertical direction Fr	305	938	561	1 195
	Lateral direction Fs	102	-102	102	-102
Z axis	Vertical direction Fr	4 872	-247	7 997	2 878
	Lateral direction Fs	839	-839	839	-839

Calculation of dynamic equivalent load

Next, find dynamic equivalent load under each cutting condition. From "Table 2.3" in "A-3-2.2 3. Calculation of dynamic equivalent load," the necessary loads, Fr and Fse are, as the linear guide model is LA Series, obtained as follows.

Vertical dynamic equivalent load Fr = FrLateral dynamic equivalent load

Fse = Fs • tan α = Fs

From the above, calculate Fe using formulas for full dynamic equivalent loads shown in page A23. From calculation, the largest full dynamic equivalent loads are as follows.

Avia	Largest full dynamic equivalent load Fe (N)				
Axis	No cutting load For milling process For drilling pr				
X axis	4 045	7 038	4 716		
Y axis	173	1 317	1 246		
Z axis	6 985	9 513	8 417		

Calculation of full dynamic equivalent load taking account of preload

It is necessary to include the amount of preload for the calculation of rating life when Z3 preload is specified. Consider each preload and calculate full dynamic equivalent load. Calculate Fep using formulas in "A-3-3 6. Load and rating life when the preload is taken into

account".

Preload P (X axis linear guide LA55): 8 100 (N) Preload P (Y axis linear guide LA35): 3 450 (N) Preload P (Z axis linear guide LA65): 13 800 (N)

From the above, the full dynamic equivalent loads taking preload into account are smaller than the load at which preload is relieved.

Avia	Largest full dynamic equivalent load Fe (N)				
Axis	No cutting load For milling process		For drilling process		
X axis	10 336	12 104	10 724		
Y axis	3 542	4 171	4 131		
Z axis	17 663	19 138	18 494		

Calculation of mean effective load

Calculate the mean effective loads from full dynamic equivalent loads. If duty cycle in the cutting process is not clear, set the mean effective load to 70% of the largest full dynamic equivalent load in all processes.

Therefore,

X axis: $12\ 104 \times 0.7 = 8\ 473$ (N) Y axis: $4171 \times 0.7 = 2920$ (N) Z axis: 19 138 x 0.7 = 13 397 (N)

A87

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

Determine various coefficients

Determine them based on "A-3-2.2 5. Various coefficients."

For this case the factors are following. Load coefficient f_w : 1.5 Hardness coefficient f_{H} : 1

Calculation of rating life

Based on the calculated loads and various coefficients, calculate the rating life from "A-3-2.2 6. Calculation of rating life."

Basic dynamic load rating C₁₀₀

(X axis linear guide LA55): 111 000 (N) Basic dynamic load rating C_{100} (Y axis linear guide LA35): 49 000 (N) Basic dynamic load rating C_{100}

(Z axis linear guide LA65): 206 000 (N)

Load coefficient f_w: 1.5

```
Hardness coefficient f<sub>H</sub>: 1
```

```
Rating fatigue life L = 100 \times \left| \frac{f_{\rm H} \cdot C_{100}}{f_{\rm W} \cdot F_{\rm m}} \right|
```

From this,

In case of X axis $Lx = 66\ 617\ (km)$ In case of Y axis $Ly = 140\ 012\ (km)$ In case of Z axis $Lz = 107\ 722\ (km)$

In case of roller linear guides, refer to "A-3-2.2 6.

Calculation of rating life" (page A25).

Calculate using Pattern 4 in Table 2.2.

Load conditions	Deformation	Deform	Deformation of each axis (µm)			
Load conditions	direction	X axis	Y axis	Z axis	(µm)	
Table weight	δx	-0.2	-0.1	-3.1	-3.4	
alone	δγ	-4.6	-0.3	-4.2	-9.1	
alone	δz	-4.3	-0.1	-4.9	-9.3	
	δx	-9.9	-1.3	-6.7	-17.9	
Milling process	δγ	-6.4	-1.7	-5.2	-13.3	
	δz	-6.1	-0.4	-7.7	-14.2	
	δx	-0.9	-0.3	-4.6	-5.8	
Drilling process	δγ	1.4	0.8	2.8	5.0	
	δz	5.5	1.2	7.6	14.3	

Therefore, deformation at processing points at time of milling is:

Deformation at processing points at time of drilling is:

 δ x = -17.9 - (-3.4) = -14.5 (μm) δ y = -13.3 - (-9.1) = -4.2 (μm) δ z = -14.2 - (-9.3) = -4.9 (μm)

m) $\delta x = -5.8 - (-3.4) = -2.4 (\mu m)$ $\delta y = 5.0 - (-9.1) = 14.1 (\mu m)$ $\delta z = 14.3 - (-9.3) = 23.6 (\mu m)$

Examination of static loads based on "A-3-2.2 7" Basic static load rating C_0

(X axis linear guide LA55): 215 000 (N) Basic static load rating *C*₀

(Y axis linear guide LA35): 98 000 (N) Basic static load rating $C_{\rm o}$

(Z axis linear guide LA65): 420 000 (N)

Examine a case of high-load milling process with large load.

X axis $fs = \frac{C_0}{P_0} = \frac{C_0}{(F_r + F_s)} = \frac{215\ 000}{(6\ 539 + 997)} = 28.5$

Similarly,

Y axis *f*s = 61.5 Z axis *f*s = 42.0 Therefore, there is no problem.

(3) Calculation of deformation

Calculate deformation at the processing points. (The stroke position is the stroke end positions on Y axis and X axis.)

 $\begin{array}{l} \mbox{Rigidity of X axis linear guide LA55Z3: 1 400 (N/\mum)} \\ \mbox{Rigidity of Y axis linear guide LA35Z3: 825 (N/\mum)} \\ \mbox{Rigidity of Z axis linear guide LA65Z3: 1 730 (N/\mum)} \end{array}$

If a rating life of this long period is not required, select a smaller linear guide model, and calculate the life again. To reduce deformation at the processing point, select a linear guide model with higher rigidity, and then calculate the life again.

A-3-12 Reference

The articles in "Motion & Control (NSK Technical Journals)" which refer to NSK linear guides are listed in the table below for user convenience.

"Motion & Control" is compiled to introduce NSK products and its technologies.

For inquiries and orders of "Motion & Controls," please contact your local NSK sales offices, or Representatives.

Table 12.1 Motion & Control (NSK Technical Journal): Articles relating to linear guides (1997 -)

Issue No.	Date of Publication	Articles related to linear guides
No.5	Dec. 1998	Development of the NSK K1 Seal for Linear Guides
No.8	May. 2000	NSK Linear Guides for High-Temperature Environments
No.9	Oct. 2000	Recent Developments in Highly Precise NSK Linear Guides
No.9	Oct. 2000	High-Performance Seals for NSK Linear Guides
No.11	Oct. 2001	Development of the NSK S1 Series [™] Ball Screws and Linear Guides
110.11	001.2001	High Load Capacity Mini LH Series of NSK Linear Guides
No.12	Apr. 2002	NSK Linear Guides & Ball Screws Equipped with NSK K1 [™] Lubrication Unit
No.12	Apr. 2002	NSK S1 Series [™] NSK Linear Guides and Ball Screws
No.13	Oct. 2002	Translide [™] -New Rolling Element Linear Motion Bearing-
No.14	May. 2003	New Generation of NSK Linear Guides Miniature PU Series
No.15	Dec. 2003	Ultra-Precision NSK Linear Guides for Machine Tools-the HA Series
No.16	Aug. 2004	Numerical analysis Technology & NSK Linear Guides for Machine Tools
No.16	Aug. 2004	NSK RA Series Roller Guide
No.18	Aug. 2005	New Generation of NSK linear Guides Miniature PU Series/PE Series
No.20	Aug. 2007	V1 Series of Highly Dust-Resistant NSK Linear Guides
		Technological Trends of NSK Linear Guides for Industrial Machines
No.21	Dec.2009	Highly Accurate HS Series of Ultra-Precision NSK Linear Guides
		Linear Guides for Food Machine and Medical Devices
		Technological Trends of NSK Linear Guides for Industrial Machines
No.22	Mar. 2011	High-Accuracy HS Series of Ultra-Precision NSK Linear Guides
		NSK Linear Guides for Food Processing Equipment and Medical Devices
No.23	Jun. 2013	Technological Trends in Linear Motion Rolling Guides for Machine Tools

A-4 NSK Linear Guides[™]

1. Structure of NSK Linear Guides

By avoiding structural complexity, and by reducing the number of components, we not only enhanced the precision of linear guides, but also are able to keep costs low. We have added NSK's patented unique structural feature to the original invention (**Fig. 1**). This contributes to higher precision and lower prices.

NSK linear guides consist of a rail and a slide (**Fig. 2**). The balls or rollers roll on the race way surface, and are scooped up by the end caps attached to both ends of the slide. Then, the balls or rollers go through a passage made in the slide and circulate back to the other end.

2. Characteristics of NSK Linear Guides

The use of a unique offset Gothic arch groove (Fig. 3) allows the ball type of NSK linear guides to satisfy groove designs required for specific purposes.

This unique groove design facilitates precise measurement of the ball groove, thus enabling the stable and highly accurate production of the slides and the rails for random matching. (Fig. 4)

On top of that, we have developed and marketed the NSK Roller Guides, representing the culmination of NSK's analysis technology and tribology.

Such technologies ensure the features of NSK linear guides outlined below.

(1) High precision and quality

• High precision and quality come from our superb production and measuring technologies, strengthened by extensive experience in antifriction rotary bearings and ball screw production. Our quality assurance extends to the smallest components.

(2) High reliability and durability

- Logical simplicity in shape, along with stable processing, maintains high precision and reliability.
- Super-clean materials, our advanced heat treatment and processing technologies increase product durability.

(3) Abundant in type for any purpose

• Various series are available, and their slide models and size categories are standardized to satisfy any requirement. Our technology, polished by abundant experience in the use of special materials and surface treatments, meets the customer's most demanding expectations.

(4) Development of random-matching parts for short delivery time

• The adoption of the Gothic arch groove which makes measuring easy, and a new reliable quality control method has made random-matching of the rails and the ball or roller slides possible. The parts are stocked as standard products, thereby reducing delivery time.

(5) Patented static load carrying capacity (shock-resistance)

• When a super-high load (impact) is applied, our Gothic arch groove spreads the load to surfaces which usually do not come into contact in the ball type NSK linear guides. This increases impact load resistance (**Fig. 5**).

(6) Lineup of extremely high-load capacity series

• The LA series provides a top class high-load capacity for the ball linear guides through a unique load carrying configuration with three ball recirculation circuits on the one side.

By installing rollers that are the largest possible diameter and length, the NSK roller linear guides have realized the world's highest load capacity, far superior to the roller linear guides of other companies.

Fig. 1 • French Patent in 1932. • Inventor: Gretsh (German)

NSK added its patented technology to the invention in Fig. 1, and improved the linear guide structure and realized low cost design.

Fig. 3 Two contact point at offset Gothic arch groove

Fig. 5 Shock-resistance

Fig. 2 Structure of NSK linear guides

Fig. 4 Processing and measuring grooves

Measuring grooves accuracy is easy. You can obtain highly accurate results for all types of NSK series. This is why you can purchase rails and slides separately for random matching.

3. Types and Characteristics of NSK Linear Guides

Note: For customers who have used the former LH or SH series, NH series is recommended as a substitute. Please confirm the correlation between NH series and former ones on the comparative table at A319.

Linear Guide

NSK

NSK

Page

A157

inear Guides

Note: For customers who have used the former LS or SS series, NS series is recommended as a substitute. Please confirm the correlation between NS series and former ones on the comparative table at A319.

A98

A175

Applications

Semiconductor manufacturing

LCD manufacturing equipment

· Conveying system of optical fibers

equipment

Optical stages

· Miniature robots Computer peripherals

Medical equipment

Microscope XY stages

Pneumatic equipment

Page

A191

A201

A213

A223

near Guide

Semiconductor manufacturing Wide rail miniature with low inertia and low dust equipment • Low dust generation and highly smooth operation LCD manufacturing equipment Medical equipment Optical stages • Standardized random-matching type allows Microscope XY stages Conveying optical fibers Miniature robots Computer peripherals · Pneumatic equipment Standardized random-matching type allows High-load type Medium-load type BL. UL. BR. UR CL. SL (LE only)

Cate	gory	Series	Slide shape	Shape/installation method	Load direction/capacity	Rolling element contact structure
Miniature type	Self-aligning type	LH	AN			So So
	Lightweight type	LL	PL			K K

Characteristics	Applications	Page	
 High vertical load carrying capacity and self-aligning type miniature series The contact angle between the ball and ball groove is set at 50 degrees. This design increases the load carrying capacity against the vertical directions, which is the main load acting direction in most operations. The DF contact structure greatly absorbs the installation error in the perpendicular direction to the rail. Balls make contact at two points thanks to the offset Gothic arch groove. This keeps friction to a minimum. High resistance against shock load due to the unique load-carrying structure. Gothic arch groove renders measuring of ball grooves accurate and easy. A ball retainer is a standard equipment. (LH10~12) Stainless steel type is standard. 	 Semiconductor manufacturing equipment LCD manufacturing equipment Medical equipment Optical stages Microscope XY stages Miniature robots Computer peripherals Pneumatic equipment 	A237	
 The LL series is a compact and lightweight miniature linear guide for press molding. Rails and ball slides are made of thin steel plate, and thus making them very light. Stainless steel is the standard material. 	 Platter pen heads Robot hands Pneumatic equipment 	A247	

Characteristics	Applications	Page	ar Gu
 The RA series roller guides have realized the world highest load capacity. Super-high rigidity and smooth motion contribute to higher performance of machine tools. Unique and optimum design of rollers and other component facilitate the high-load capacity and high rigidity. High-performance seals, a standard feature in the roller guides, maintain the initial performance for a prolonged time. The installation of retaining piece achieves smooth motion. Standardized random-matching type allows separate purchase of rails and roller slides. 	 Machining centers NC lathes Heavy cutting machine tools Gear cutters Electric discharge machines Press machines Various types of grinders 	A253	Guides
High-load type AN, AL		A255	
Super-high-load type BN, BL			
 As well as providing a low friction operation, the LA series provides a top class high-load capacity for the ball linear guides. The series is most suited for machine tools. The contact angle between the ball and the raceway is set at 45 degrees. This makes load carrying capacity and rigidity equal in vertical and lateral directions. Six-row ball grooves support the load from vertical and lateral directions, enhancing rigidity and increasing load carrying capacity. Appropriate friction Best suited for machine tools. 	 Machining centers NC lathes Heavy cutting machine tools Gear cutters Electric discharge machines Press machines Various types of grinders 		
High-load type AN, AL		A271	
Super-high-load type BN, BL			

A106

inear Guide:

80°C Max ure limitation.

(3) Precautions in use

NSK linear guides are high quality and are easy to use. NSK places importance on safety in design. For maximum safety, please follow precautions as outlined below.

5. Linear Guides: Handling Precautions

(1) Lubrication

- a. If your linear guide is rust prevention specification, thoroughly wipe the rust prevention oil and put lubricant inside of slide before using. For seal lubrication products, put lubricant on the rail.
- b. Do not mix greases of different brands.
- c. If your linear guide is rust prevention specifications, put lubricant inside of slide before using.

(2) Handling

- a. Slides for random-matching are installed to the provisional rail when they leave the factory. Handle the slide with care during installation to the rail.
- b. Do not disassemble the linear guide unless absolutely necessary. Not only does it allow dust to enter, but it lessens precision.
- c. The slide may move by simply leaning the rail. Make sure that the slide does not disengage from the rail.
- d. Standard end cap is made of plastic. Beating it or hitting it against an object may cause damage.

Do not contaminate. Temperature limitation.

- Make every effort not to allow dust and foreign objects to enter.
- b. Please apply splash guard or bellows to the linear guide to prevent sticking resolvent or coolant when it contains corrosive material.
- c. The temperature of the place where linear guides are used should not exceed 80°C (excluding heatresistant type linear guides). A higher temperature may damage the plastic end cap.
- d. If the user cuts the rail, thoroughly remove burrs and sharp edges on the cut surface.
- e. When hanging upside-down (e.g. the rail is installed upside-down on the ceiling in which the slide faces downward), should the end cap be damaged, causing the balls or rollers to fall out, the slide may be detached from the rail and fall. For such use, take measures including installing a safety device.

a. Linear guide may bend if the rail is stored in inappropriate position. Place it on a suitable surface, and store it in a flat position.

4. Guide to Technical Services

(1) CAD drawing data

NSK offers CAD data for linear guides. Please download it from the website of NSK.

NSK website

http://www.nsk.com

- Data in drawings are filed in the actual size (some parts are simplified). You can use these data without processing.
- Drawings are three-views projection.
- Dimension lines are omitted to render the data as standard drawing for database.

Data offered by CAD

NSK linear guides

NH Series

VH Series

TS Series NS Series

LW Series

PU Series

LU Series

PE Series

LE Series

Miniature LH Series

RA Series

LA Series

HA Series

HS Series

(2) Telephone consultation with NSK engineers

This catalog contains technical explanation for each section. However, some descriptions and explanations may be insufficient due to page limitation, etc. To amend this shortcoming, NSK offers telephone assistance. NSK engineers are pleased to help you. Our local offices are listed in the last part of this catalog. Call local NSK office or Representative in your area.

6. Design Precautions

The following points must be heeded in examining the life.

- If the balls or rollers do not rotate all the way, but only halfway, and if this minute stroke is repeated, lubricant disappears from the contact surface of balls or rollers and raceways. This generates "fretting," a premature wear. Fretting cannot be entirely prevented in such a case but it can be mitigated.
- We recommend anti-fretting grease for oscillating stroke operations. Even in a case using a standard grease, the life can be markedly prolonged by adding a normal stroke travel (about the slide length) once every several thousand cycles.

When applying pitching or yawing moment

- Load applied to the ball or roller rows inside the slide is inconsistent if pitching or yawing moment load is applied. Loads are heavy on the balls or rollers on each end of the row.
- In such a case, a heavy load lubricant grease or oil is recommended. Another countermeasure is using one size larger model of linear guide to reduce the load per ball or roller.
- Moment load is insignificant for 2-rail, 4-slide combination which is commonly used.

When an extraordinary large load is applied during stroke

- If an extraordinary large load is applied at certain position of the stroke, calculate not only the life based on the mean effective load, but also the life based on the load in this range.
- When an extraordinary heavy load is applied and thus the application of high tensile stress to fixing bolts of the rails and slides is foreseen, the strength of the bolts should be considered.

When calculated life is extraordinarily short (Less than 3 000 km in calculated life.)

- In such a case, the contact pressure to the balls or rollers and the rolling contact surface is extraordinarily high.
- When a linear guide is operated under such state continually, the life is significantly affected by the loss of lubrication and the presence of dust, and thus the actual life becomes shorter than calculated.
- It is necessary to reconsider the number of slides, the arrangement of slides, and the type of model in order to reduce the load to the slide.
- It is necessary to consider preload for calculation of rating life when selecting Z3 (medium preload) or Z4 (heavy preload) as a preload. For the calculation of full dynamic equivalent loads that consider preload, see "A-3-3 6" on page A31. Please consult NSK for details.

- The standard maximum allowable speed of a linear guide under normal conditions is 100 m/min.
 However, the maximum allowable speed can be affected by accuracy of installation, temperature, external loading etc.
- The end cap with high speed specification must be used when operating speed exceeds the permissible speed. In such a case, please consult NSK.

NSK

NSK

A-5 Technical Description and Dimension Table for NSK Linear Guides

1. NH Series	A113
2. VH Series	A133
3. TS Series	A151
4. NS Series	A157
5. LW Series	A175

A-5-1 General Industrial Use

A-5-1.1 NH Series

1. Features (1) Improve rating life dramatically

Based on the LH series characterized by reliability and performance, a significant increase in durability has been attained. New ball groove geometry is introduced, which has been developed by utilizing NSK's state-of-theart tribological and analytical technologies. Due to the optimized distribution of contact surface pressures, the rating life has dramatically increased.

As compared with the LH Series, the load rating capacity of the NH series has increased to 1.3 times, while the life span has increased to twice⁺¹. These features enable you to design a machine with a longer life and downsize the machine. Thus, your design capability is greatly enhanced.

*1: Representative values of series.

(2) Ball circulation path with excellent high-speed property

By reexamining the design practice for the ball circulation path, we have attained smooth ball circulation and reduced noise level. So, NH series is suited for high-speed applications compared with the LH Series.

(3) All mounting dimensions are the same as those for the LH and SH Series

Regarding the mounting dimensions (mounting parts' dimensions), such as the mounting height, mounting width, mounting hole diameter/pitch of the linear guide, etc., the mounting dimensions of the NH Series remain the same as those of the conventional LH series and SH series. So, the new NH Series linear guides can be used without making any design changes.

(4) High self-aligning capability (rolling direction)

Same as the DF combination in angular contact

Note: For customers who have used the former LH or SH series, NH series is recommended as a substitute. Please confirm the correlation between NH series and former ones on the comparative table at A319.

bearings, self-aligning capability is high because the cross point of the contact lines of balls and grooves comes inside, and thus reducing moment rigidity.

This increases the capacity to absorb errors in installation.

(5) High load carrying capacity to vertical direction

The contact angle is set at 50 degrees, and thus increasing load carrying capacity as well as rigidity in vertical direction.

(6) High resistance against impact load

The bottom ball groove is formed in Gothic arch and the center of the top and bottom grooves are offset as shown in **Fig. 2**. The vertical load is generally carried by the top ball rows, where balls are contacting at two points. Because of this design, the bottom ball rows will carry load when a large impact load is applied vertically as shown in **Fig. 3**. This assures high resistance to the impact load.

(7) High accuracy

As showing in **Fig. 4**, fixing the master rollers to the ball grooves is easy thanks to the Gothic arch groove. This makes easy and accurate measuring of ball grooves.

Fig. 1 NH Series

Fig. 2 Enlarged illustration of the offset Gothic arch groove

(8) Easy to handle, and designed with safety in mind.

Balls are retained in the retainer, therefore they do not fall out when the ball slide is withdrawn from the rail.

(9) Abundant models and sizes

Each size of NH Series has various models of ball slides, rendering the linear guide available

Fig. 3 When load is applied

2. Ball slide shape

for numerous uses.

(10) Fast delivery

Lineup of random-matching rails and ball slides supports and facilitates fast delivery. High precision grade and medium preload types are also available in randam matching. (Special high-carbon steel products)

Fig. 4 Rail grinding and measuring

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

3. Accuracy and preload

(1) Running parallelism of ball slide Table 1

(1) Running parallelism of ball slide Table 1 Unit: µm							
	Pre	loaded asser	nbly (not ran	idom matchi	ing)	Random-ma	atching type
Rail length (mm) over or less	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6	Normal grade PN	High precision PH	Normal grade PC
- 50	2	2	2	4.5	6	2	6
50 - 80	2	2	3	5	6	3	6
80 - 125	2	2	3.5	5.5	6.5	3.5	6.5
125 – 200	2	2	4	6	7	4	7
200 – 250	2	2.5	5	7	8	5	8
250 - 315	2	2.5	5	8	9	5	9
315 - 400	2	3	6	9	11	6	11
400 - 500	2	3	6	10	12	6	12
500 - 630	2	3.5	7	12	14	7	14
630 - 800	2	4.5	8	14	16	8	16
800 – 1 000	2.5	5	9	16	18	9	18
1 000 – 1 250	3	6	10	17	20	10	20
1 250 – 1 600	4	7	11	19	23	11	23
1 600 – 2 000	4.5	8	13	21	26	13	26
2 000 – 2 500	5	10	15	22	29	15	29
2 500 – 3 150	6	11	17	25	32	17	32
3 150 – 4 000	9	16	23	30	34	23	34

(2) Accuracy standard

The preloaded assembly has five accuracy grades; Ultra precision P3, Super precision P4, High precision P5, Precision P6 and Normal PN grades, while the random-matching type has High precision PH and Normal PC grade. Tolerance of preloaded assembly

relefance et prefeaded decembry	Та	ble 2			Unit: µm
Accuracy grade Characteristics	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6	Normal grade PN
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 3	±10 5	±20 7	±40 15	±80 25
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 3	±15 7	±25 10	±50 20	±100 30
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	Shown in Table 1 , Fig. 5 , and Fig. 6				

Tolerance of random-matching type

Table 3 Unit						
Accuracy grade	High prec	ision grade PH	Normal	grade PC		
Characteristics Model No.	NH15, 20, 25, 30, 35	NH45, 55, 65	NH15, 20, 25, 30, 35	NH45, 55, 65		
Mounting height H	±20	±30	±20	±30		
Variation of mounting height H	15① 30②	20① 35②	15① 30②	20① 35②		
Mounting width W_2 or W_3	±30	±35	±30	±35		
Variation of mounting width W_2 or W_3	20	30	25	30		
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	See Table 1, Fig. 5 and Fig. 6					

Note: 1 Variation on the same rail 2 Variation on multiple rails

(3) Combinations of accuracy and preload Table 4

			Table	4					
				Ac	curacy gra	de			
		Ultra precision	Super precision	High precision	Precision grade	Normal grade	High precision	Normal grade	z
Wi	thout NSK K1 lubrication unit	P3	P4	P5	P6	PN	PH	PC	S HN
Wi	th NSK K1 lubrication unit	К3	K4	K5	K6	KN	КН	КС	Series
Wit	h NSK K1 for food and medical equipment	F3	F4	F5	F6	FN	FH	FC	8
	Fine clearance	0		0	0	0			
	ZO			0		0	_	_	
	Slight preload	0		0	0	\bigcirc			
	Z1			0		0	_	_	
_	Medium preload	0		0	0				
oad	Z3			0	U		_	—	
Preload	Random-matching type with fine clearance							\cap	
	ZT				_	_		0	
	Random-matching type with slight preload						0	\cap	
	ZZ	_	_	_	_	_	0	0	
	Random-matching type with medium preload						0	0	
	ZH	_					0	0	

(4) Assembled accuracy

Fig. 6 Stainless steel

A115

NSK

(5) Preload and rigidity

We offer six levels of preload: Slight preload Z1, Medium preload Z3 and Fine clearance Z0, along with random-matching type of Medium preload ZH, Slight preload ZZ and Fine clearance ZT.

Preload and rigidity of preloaded assembly

Table 5

Model No.		Preload (N)		Rigidity (N/µm)			
		Preioa	Freioad (N)		direction	Lateral direction	
	Model No.	Slight preload	Medium preload	Slight preload	Medium preload	Slight preload	Medium preload
		Z1	Z3	Z1	Z3	Z1	Z3
	NH15 AN, EM	78	490	137	226	98	186
	NH20 AN, EM	147	835	186	335	137	245
type	NH25 AL, AN, EM	196	1 270	206	380	147	284
dty	NH30 AL, AN	245	1 570	216	400	157	294
High-load	NH30 EM	294	1 770	265	480	186	355
-	NH35 AL, AN, EM	390	2 350	305	560	216	390
Hig	NH45 AL, AN, EM	635	3 900	400	745	284	540
	NH55 AL, AN, EM	980	5 900	490	910	345	645
	NH65 AN, EM	1 470	8 900	580	1 070	400	755
e	NH15 BN, GM	98	685	196	345	137	284
type	NH20 BN, GM	196	1 080	265	480	196	355
	NH25 BL, BN, GM	245	1 570	294	560	216	400
-10	NH30 BL, BN, GM	390	2 260	360	665	265	480
igh	NH35 BL, BN, GM	490	2 940	430	795	305	570
er-h	NH45 BL, BN, GM	785	4 800	520	960	370	695
uper-high-load	NH55 BL, BN, GM	1 180	7 050	635	1 170	440	835
SI	NH65 BN, GM	1 860	11 300	805	1 480	550	1 040

Note: Clearance for Fine clearance Z0 is 0 to 3µm. Therefore, preload is zero. However, Z0 of PN grade is 0 to 15µm.

· Clearance and preload of random-matching type

	Unit: µm		
Model No.		Slight preload	
	ZT	ZZ	ZH
NH15	-4 — 15	-4 0	-73
NH20		-5 — 0	-83
NH25		-5 — 0	-94
NH30		-7 — 0	–12 — –5
NH35	-5 — 15	-7 — 0	-12 — -5
NH45		-7 — 0	-14 7
NH55		-9 - 0	–18 — –9
NH65		-9 — 0	-19 10

Note: Minus sign denotes that a value is an amount of preload (elastic deformation of balls).

4. Maximum rail length

Table 7 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grades. Table 7 Length limitations of rails

	Table / Length Initiations of fails Unit: m								
Series	Size Material	15	20	25	30	35	45	55	65
NH	Special high carbon steel	2 980	3 960	3 960	4 000	4 000	3 990	3 960	3 900
INH	Stainless steel	1 800	3 500	3 500	3 500				

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

(1) Permissible values of mounting error

	Table 8 Unit: μm								
Value	Preload				Mode	el No.			
value	Fleidau	NH15	NH20	NH25	NH30	NH35	NH45	NH55	NH65
Permissible values of	Z0, ZT	22	30	40	45	55	65	80	110
parallelism in two rails e	Z1, ZZ	18	20	25	30	35	45	55	70
	Z3, ZH	13	15	20	25	30	40	45	60
Permissible values of	Z0, ZT	375µm/500mm							
parallelism (height) in two rails e_2	Z1, ZZ, Z3, ZH	330µm/500mm							

(2) Shoulder height of the mounting surface and corner radius r

Table 9

NSK

		Table 9		Unit: mm		
Model No.	Corner radiu	s (maximum)	Shoulder height			
Wodel No.	ľ _a	Γ _b	H	H"		
NH15	0.5	0.5	4	4		
NH20	0.5	0.5	4.5	5		
NH25	0.5	0.5	5	5		
NH30	0.5	0.5	6	6		
NH35	0.5	0.5	6	6		
NH45	0.7	0.7	8	8		
NH55	0.7	0.7	10	10		
NH65	1	1	11	11		

6. Maximum allowable speed

An indication of the standard maximum allowable speed aiming at 10,000km operation with NH series under normal conditions is shown in Table 10. However, the maximum allowable speed can be affected by accuracy of installation, operating temperature, external load, etc. If the operation is made exceeding the permissible distance and speed, please consult NSK.

	Table 10 Maximum allowable speed Unit: m/mir									
Size Series	15	20	25	30	35	45	55	65		
NH			300			20	00	150		

7. Lubrication components

Refer to pages A38 and D13 for the lubrication of linear guides.

(1) Types of lubrication accessories

Fig. 11 and Table 11 show grease fittings and tube fittings.

We provide lubrication accessories with extended thread body length (L) for the addition of dust-proof accessories such as NSK K1 lubrication unit, double seal and protector.

We provide a suitable lubrication accessory for the special requirement on dust-proof accessories.

Consult NSK for a lubrication accessory with extended length of thread body for your convenience of replenishing lubricant.

When you require stainless lubrication accessories, please ask NSK.

(2) Mounting position of lubrication accessories

The standard position of grease fittings is the end face of ball slide. We mount them on a side of end cap for an option. (**Fig. 12**)

Please consult NSK for installation of grease or tube fittings to the ball slide body or side of end cap.

When using a piping unit with thread of $M6 \times 1$, you require a connector to connect to a grease fitting mounting hole with $M6 \times 0.75$. The connector is available from NSK.

Fig. 12 Mounting position of lubrication accessories

Grease fitting

Fig. 11 Grease fitting and tube fitting

	Unit: mm		
Model No.	Dust-proof specification	Grease fitting	Tube fitting
	specification	Thread body length L	Thread body length L
	Standard	5	-
NH15	With NSK K1	10	-
CINNI	Double seal	*	-
	Protector	*	-
	Standard	5	-
NH20	With NSK K1	12	-
INH20	Double seal	10	-
	Protector	10	-
	Standard	5	5
NH25	With NSK K1	12	12
	Double seal	10	9
	Protector	10	9
	Standard	5	6
NH30	With NSK K1	14	13
INH30	Double seal	12	11
	Protector	12	11
	Standard	5	6
NH35	With NSK K1	14	13
INH35	Double seal	12	11
	Protector	12	11
	Standard	8	17
NUL 45	With NSK K1	18	21.5
NH45	Double seal	14	17
	Protector	14	17
	Standard	8	17
	With NSK K1	18	21.5
NH55	Double seal	14	17
	Protector	14	17
	Standard	8	17
NULOF	With NSK K1	20	25.5
NH65	Double seal	16	19
	Protector	16	17

*) A connector is required for this model. Please contact NSK for grease fittings.

NH Serie:

8. Dust-proof components

(1) Standard specification

The NH Series can be readily used as they have a dust protection means for normal conditions. As the standard equipment, the ball slides have an end seal on both ends, and bottom seals at the bottom.

Fig.	13
------	----

Table 12 Seal friction per ball slide (maximum value)								
Series	15	20	25	30	35	45	55	65
NH	8	9	10	10	12	17	22	29

(2) NSK K1[™] lubrication unit

Table 13 shows the dimension of linear guides equipped with the NSK K1 lubrication unit.

Table 13

Un	it:	mn

							Unit. min
Model No.	Ball slide length	Ball slide model	Standard ball slide length	Ball slide length installed with two NSK K1 L	Per NSK K1 thickness V1	Protective cover thickness V ₂	Protruding area of the grease fitting N
	Standard	AN, EM	55	65.6			(5)
NH15	Long	BN, GM	74	84.6	4.5	0.8	(5)
NULIOO	Standard	AN, EM	69.8	80.4	4.5	0.0	(4.4)
NH20	Long	BN, GM	91.8	102.4	4.5	0.8	(14)
NULOF	Standard	AL, AN, EM	79.0	90.6	5.0	0.8	(4.4)
NH25	Long	BL, BN, GM	107	118.6	5.0		(14)
	Standard	AL, AN	85.6	97.6	5.0 1	5.0 1.0	(14)
NH30	Stanuaru	EM	98.6	110.6			
	Long	BL, BN, GM	124.6	136.6			
	Standard	AL, AN, EM	109	122		1.0	(1.4)
NH35	Long	BL, BN, GM	143	156	5.5	1.0	(14)
	Standard	AL, AN, EM	139	154	0.5	1.0	(15)
NH45	Long	BL, BN, GM	171	186	6.5	1.0	(15)
	Standard	AL, AN, EM	163	178	0.5	1.0	(15)
NH55	Long	BL, BN, GM	201	216	6.5	1.0	(15)
NULOF	Standard	AN, EM	193	211		1.0	(1.0)
NH65	Long	BN, GM	253	271	8.0	1.0	(16)

Notes: 1) NSK K1 for food and medical equipments are available for NH15 to NH35.

2) Ball slide length equipped with NSK K1 = (Standard ball slide length) + (Thickness of NSK K1, V₁ × Number of NSK K1) + (Thickness of the protective cover, V₂ × 2)

(3) Double seal

Use a double seal set as showing in **Table 14**, when installing an extra seal to completed standard products. (**Fig. 14**)

When installing a grease fitting after the installation of double seals, a connector as showing in **Fig.14** is required.

Fig. 14 Double seal

Table 14 Double-seal set

Model No.	Referer Without connector	Increased thickness V₃ (mm)	
NH15	LH15WS-01	*	2.5
NH20	LH20WS-01	LH20WSC-01	2.5
NH25	LH25WS-01	LH25WSC-01	2.8
NH30	LH30WS-01	LH30WSC-01	3.6
NH35	LH35WS-01	LH35WSC-01	3.6
NH45	LH45WS-01	LH45WSC-01	4.3
NH55	LH55WS-01	LH55WSC-01	4.3
NH65	LH65WS-01	LH65WSC-01	4.9

(4) Protector

Use a protector set as showing **Table 15**, when installing a protector to completed standard products. (**Fig.15**)

When installing a grease fitting after the installation of protectors, a connector as showing in **Fig.15** is required.

Fig. 15 Protector

Table 15 Protector set

Model No.	Referer Without connector	nce No. With connector	Increased thickness V ₄ (mm)
NH15	LH15PT-01	*	2.7
NH20	LH20PT-01	LH20PTC-01	2.9
NH25	LH25PT-01	LH25PTC-01	3.2
NH30	LH30PT-01	LH30PTC-01	4.2
NH35	LH35PT-01	LH35PTC-01	4.2
NH45	LH45PT-01	LH45PTC-01	4.9
NH55	LH55PT-01	LH55PTC-01	4.9
NH65	LH65PT-01	LH65PTC-01	5.5

*) For installation of a connector to a drive-in type grease fitting, contact NSK.

Fig. 16

(5) Cap to plug the rail mounting bolt hole

Table 16 Caps to plug rail bolt hole

Model No.	Bolt to	Сар	Quantity
WIDGET NO.	secure rail	reference No.	/case
NH15	M4	LG-CAP/M4	20
NH20	M5	LG-CAP/M5	20
NH25	M6	LG-CAP/M6	20
NH30, NH35	M8	LG-CAP/M8	20
NH45	M12	LG-CAP/M12	20
NH55	M14	LG-CAP/M14	20
NH65	M16	LG-CAP/M16	20

(6) Inner seal

Inner seal is only available for models shown in the table below.

	Table 17	Serie
Series	Model No.	ŝ
NH	NH20, NH25, NH30, NH35, NH45, NH55, NH65	

(7) Bellows

- A bellows fastener kit, which includes one of bellows faster, two of M_1 set screws, two of M_2 set screws, and two collars for M_2 set screws as showing Fig. 7.7 on page A55, is supplied with ellows for the ends.
- Middle bellows are supplied with four set screws and four collars.
- Use a bellows fastener kit as showing Table 18, when installing bellows to completed standard products.
- When NSK K1, double seals or protectors are used, the set screws of bellows fastener kit are unable to use.

Please contact NSK for details.

 Bellows fastener is available only for the horizontal mounting positions. For other mounting positions, sliding plate is required (see Fig. 7.10 on page A56).

For fixing to the rail, make tap holes to the rail end surface. Fix the bellows mounting plate to the rail end surface through these tap holes by using a machine screw. NSK processes a tap hole to the rail end face when ordered with a linear guide.

Table 18 Bellows fastner kit reference No.

Model No.	Kit reference No.
NH20	LH20FS-01
NH25	LH25FS-01
NH30	LH30FS-01
NH35	LH35FS-01
NH45	LH45FS-01
NH55	LH55FS-01
NH65	LH65FS-01

Ę

Dimension tables of bellows NH Series

Fig. 17 Dimensions of bellows

	Table 19 Dimensions of bellows Unit: n													
Model No.	Н	h_1	Ε	W	Р	а	b	BL minimum length	M ₁ Tap x depth	M₂Tap x depth				
JAH20N	29.5	24.5	5	48	10	13	22	17	M3 × 5	M2.5 × 16				
JAH25L	35	28	7	51	10	16	26	17	$M3 \times 5$	M3 × 18				
JAH25N	39	32	/	61	15	10	20	17	1013 × 5	1013 × 10				
JAH30L	41	32	9	60	12	18	31	17	$M4 \times 6$	M4 × 22				
JAH30N	44	35	3	66	15	10	51	17	1014 × 0	1014 × 22				
JAH35L	47	37.5	9.5	72	15	24	34	17	$M4 \times 6$	M4 × 23				
JAH35N	54	44.5	9.0	82	20	24	34	17	1V14 X 0	1VI4 X Z3				
JAH45L	59	45	14	83	15	32	44.5	17	M5 × 8	M5 × 28				
JAH45N	69	55	14	103	25	32	44.0	17	0 X CIVI	IVID X ZO				
JAH55L	69	54	15	101	20	40	50.5	17	M5 × 8	M5 × 30				
JAH55N	79	64	15	121	30	40	50.5	17	NUD X 8	IVID X 30				
JAH65N	89	73	16	131	30	48	61	17	$M6 \times 8$	$M6 \times 35$				

	Та	able 20	Numbe	rs of fo	ds (BL)	and len	gths of	bellows		I	Unit: mm
Model No.	Number of BL	2	4	6	8	10	12	14	16	18	20
woder no.	Lmin	34	68	102	136	170	204	238	272	306	340
JAH20N	Stroke	106	212	318	424	530	636	742	848	954	1 060
JAHZUN	Lmax	140	280	420	560	700	840	980	1 1 2 0	1 260	1 400
JAH25L	Stroke	106	212	318	424	530	636	742	848	954	1 060
JAHZOL	Lmax	140	280	420	560	700	840	980	1 120	1 260	1 400
JAH25N	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
JANZJN	Lmax	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 1 0 0
JAH30L	Stroke	134	268	402	536	670	804	938	1 072	1 206	1 340
JAIIJUL	Lmax	168	336	504	672	840	1 008	1 1 7 6	1 344	1 512	1 680
JAH30N	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
JAHJUN	Lmax	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 1 0 0
JAH35L	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
JAHIJUL	Lmax	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
JAH35N	Stroke	246	492	738	984	1 230	1 476	1 722	1 968	2 2 1 4	2 460
JAHSSIN	Lmax	280	560	840	1 1 2 0	1 400	1 680	1 960	2 240	2 520	2 800
JAH45L	Stroke	176	352	528	704	880	1 058	1 232	1 408	1 584	1 760
JAH45L	Lmax	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
JAH45N	Stroke	316	632	948	1 264	1 580	1 896	2 212	2 528	2 844	3 160
5A114511	Lmax	350	700	1 050	1 400	1 750	2 100	2 450	2 800	3 1 5 0	3 500
JAH55L	Stroke	246	492	738	984	1 230	1 476	1 722	1 968	2 2 1 4	2 460
JANUSE	Lmax	280	560	840	1 1 2 0	1 400	1 680	1 960	2 240	2 520	2 800
JAH55N	Stroke	386	772	1 1 58	1 544	1 930	2 3 1 6	2 702	3 088	3 474	3 860
5415514	Lmax	420	840	1 260	1 680	2 100	2 520	2 940	3 360	3 780	4 200
JAH65N	Stroke	386	772	1 1 58	1 544	1 930	2 3 1 6	2 702	3 088	3 474	3 860
5710514	Lmax	420	840	1 260	1 680	2 100	2 520	2 940	3 360	3 780	4 200

Note: The values of an odd number BL quantity (3, 5, 7, ...) can be obtained by adding two values of even number BL on the both sides, then by dividing the sum by 2.

NH Series

9. Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

(2) Reference number for random-matching type

Rail N1H 30 1200 L C	<u>N -** PC Z</u>
Random-matching rail series code N1H: NH Series random-matching rail Size	Preload code (See page A116.) T: Fine clearance Z: Slight preload (common rail for slight or medium preload)
Rail length (mm)	Accuracy code
Deil shane ander l	PC: Normal grade random-matching type
Rail shape code: L	Design serial number
L: Standard	Added to the reference number.
Material/surface treatment code (See Table 21.)	*Butting rail specification
	N: Non-butting. L: Butting specification
·	*Please consult with NSK for butting rail specification.

The reference number coding for the assembly of random-matching type is the same as that of the preloaded assembly. However, only preload codes of "fine clearance T", "slight preload Z" and "medium preload H" are available (refer to page A116).

Table 21 Material/surface treatment code

Code	Description
С	Special high carbon steel (NSK standard)
К	Stainless steel (NH15 to NH30 only)
D	Special high carbon steel with surface treatment
Н	Stainless steel with surface treatment
Ζ	Other, special

Note: High-precision grade and medium preload of random-matching type are not available in stainless steel.

Table 22 Accuracy code

Standard (Without NSK K1)		
	With NSK K1	With NSK K1 for food and medical equipment
P3	К3	F3
P4	K4	F4
P5	K5	F5
P6	K6	F6
PN	KN	FN
PH	КН	FH
PC	KC	FC
	P4 P5 P6 PN PH PC	P4 K4 P5 K5 P6 K6 PN KN PH KH

Note: Refer to pages A38 and A61 for NSK K1 lubrication unit.

10. Dimensions NH-AN (High-load type / Standard) NH-BN (Super-high-load type / Long)

<u>NH 30 1200 ANC2 -** PCZ</u>

C: Special high carbon steel (NSK standard), K: Stainless steel

Front view of AN and BN types

	A	ssemb	ly					Ball slic	de							
Maralal Nia	Height			Width Length Mounting hole						Grease	fittir	ıg	Width	Height		
Model No.	н	E	W_2	w	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	к	Т	Hole size	<i>T</i> ₁	N	<i>W</i> 1	H ₁
NH15AN NH15BN	1 28	4.6	9.5	34	55 74	26			39 58	23.4	8	ø 3	8.5	3.3	15	15
NH20AN NH20BN	1 .30	5	12	44	69.8 91.8	32	36 50	M5×0.8×6	50 72	25	12	M6×0.75	5	11	20	18
NH25AN NH25BN	1 4()	7	12.5	48	79 107	35	35 50	M6×1×9	58 86	33	12	M6×0.75	10	11	23	22
NH30AN NH30BN	1/15	9	16	60	85.6 124.6	40	40 60	M8×1.25×10	59 98	36	14	M6×0.75	10	11	28	26
NH35AN NH35BN	1 55	9.5	18	70	109 143	50	50 72	M8×1.25×12	80 114	45.5	15	M6×0.75	15	11	34	29
NH45AN NH45BN	1 /()	14	20.5	86	139 171	60	60 80	M10×1.5×17	105 137	56	17	Rc1/8	20	13	45	38
NH55AN NH55BN	1 20	15	23.5	100	163 201			126 164	65	18	Rc1/8	21	13	53	44	
NH65AN NH65BN	i an	16	31.5	126	193 253	76 70 M16×2×20		147 207	74	23	Rc1/8	19	13	63	53	

Notes: 1) External appearance of stainless steel ball slides differs from those of carbon steel ball slides.

Reference number for ball slide of random-matching type Ball slide NAH 30 AN S Z -K

Reference number for rail of random-matching type Rail N1H30 1200 L C N -** PC Z

				H								01	III. IIIIII	
Rail						В	asic load	rating				We	ight	
Pitch	Mounting	G	Max.	²⁾ Dyn	amic	ic Static Static moment (N·m)								
	bolt hole		Length L_{0max} .	[50km]	[100km]	C_0	M _{BO}	N	1 _{PO}	٨	A _{YO}	slide		
F	$d \times D \times h$	(reference)	() for stainless	$C_{50}(N)$	$C_{100}(N)$	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)	
60	4.5×7.5×5.3	20	2 980	14 200	11 300	20 700	108	94.5	575	79.5	480	0.18	1.6	
00	1.0/(7.0/(0.0	20	$(1\ 800)$	18 100	14 400	32 000	166	216	1 1 5 0	181	965	0.26	1.0	
~~		20	3 960	23 700	18 800	32 500	219	185	1 140	155	955	0.33	0.0	
60	6×9.5×8.5	20	(3 500)	30 000	24 000	50 500	340	420	2 230	355	1 870	0.48	2.6	
<u> </u>	7 11 0	20	3 960	33 500	26 800	46 000	360	320	1 840	267	1 540	0.55	2.0	
60	7×11×9	20	(3 500)	45 500	36 500	71 000	555	725	3 700	610	3 100	0.82	3.6	
80	0 14 10	00	4 000	41 000	32 500	51 500	490	350	2 290	292	1 920	0.77	5.2	
80	9×14×12	20	(3 500)	61 000	48 500	91 500	870	1 030	5 600	865	4 700	1.3	5.2	
80	0.14.12	20	4 000	62 500	49 500	80 500	950	755	4 500	630	3 800	1.5	7.2	
00	9×14×12	20	4 000	81 000	64 500	117 000	1 380	1 530	8 350	1 280	7 000	2.1	1.2	
105	14×20×17	22.5	3 990	107 000	84 500	140 000	2 140	1 740	9 750	1 460	8 150	3.0	12.3	
105	14x20x17	22.5	3 990	131 000	104 000	187 000	2 860	3 000	15 600	2 520	13 100	3.9	12.3	
120	16×23×20	30	3 960	158 000	125 000	198 000	3 600	3 000	16 300	2 510	13 700	4.7	16.9	
120	16×23×20	30	3 900	193 000	153 000	264 000	4 850	5 150	26 300	4 350	22 100	6.1	10.9	
150	18×26×22	35	3 900	239 000	190 000	281 000	6 150	4 950	27 900	4 150	23 400	7.7	24.3	
150	10×20×22	30	3 900	310 000	246 000	410 000	8 950	10 100	51 500	8 450	43 500	10.8	24.3	

2) The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

C₅₀; the basic dynamic load rating for 50 km rated fatigue life C₁₀₀; the basic dynamic load rating for 100 km rated fatigue life

The basic static load rating shows static permissible load.

3) High-precision grade and medium preload of random-matching type are available for high-carbon steel products.

NSK

Unit: mm

NH-AL (High-load type / Standard) NH-BL (Super-high-load type / Long) NH 30 1200 ALC2 -** PCZ Series name Preload code (See page A116.) 0: Z0, 1: Z1, 3: Z3, T: ZT, Z: ZZ, H: ZH Size Accuracy code (See Table 22.) Rail length (mm) Design serial number Ball slide shape code (See page A114.) Added to the reference number Material/surface treatment code (See Table 21.) Number of ball slides per rail

C: Special high carbon steel (NSK standard), K: Stainless steel

	A	ssemb	ly					Ball slic	de							
Model No.	Height			Width	Length		Mour	nting hole				Grease	fittin	g	Width	Height
	Н	E	W ₂	W	L	B J $M \times \text{pitch} \times \ell$			L ₁	K	Т	Hole size	<i>T</i> ₁	N	<i>W</i> ₁	H_1
NH25AL NH25BL	36	7	12.5	48	79 107	35	35 50	M6×1×6	58 86	29	12	M6×0.75	6	11	23	22
NH30AL NH30BL	42	9	16	60	85.6 124.6	40	40 60	M8×1.25×8	59 98	33	14	M6×0.75	7	11	28	26
NH35AL NH35BL	48	9.5	18	70	109 143	50	50 72	M8×1.25×8	80 114	38.5	15	M6×0.75	8	11	34	29
NH45AL NH45BL	60	14	20.5	86	139 171	60 60 M10×1.5×10		105 137	46	17	Rc1/8	10	13	45	38	
NH55AL NH55BL	70	15	23.5	100	163 201	75 75 M12×1.75×13		126 164	55	15	Rc1/8	11	13	53	44	

Notes: 1) External appearance of stainless steel ball slides differs from those of carbon steel ball slides.

Reference number for ball slide of random-matching type

Reference number for rail of random-matching type N1H30 1200 L C N -** PC Z Rail

Random-matching rail series of	
N1H: NH Series random-match	ing rail
Size	
Rail length (mm)	
Rail shape code: L	
Rail shape code: L L: Standard	ment code (See Table 21

												U	nit: mm
Rail						Ba	sic load	rating				Weig	ght
Pitch	Mounting	G	Max. length	²⁾ Dyn	²¹ Dynamic Static Static moment (N·m)								Rail
	bolt hole		L _{0max} .	[50km]	[100km]	C_{0}	M _{RO}	Λ	1 _{PO}	N	1 _{YO}		
F	$d \times D \times h$	(reference)	() for stainless	$C_{50}(N)$	$C_{100}(N)$	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
60	7×11×9	20	3 960	33 500	26 800	46 000	360	320	1 840		1 540	0.46	3.6
			(3 500)	45 500	36 500	71 000	555	725	3 700	610	3 100	0.69	
80	9×14×12	20	4 000	41 000	32 500	51 500	490	350	2 290	292	1 920	0.69	5.2
	0/11///12	20	(3 500)	61 000	48 500	91 500	870	1 0 3 0	5 600	865	4 700	1.16	0.2
80	9×14×12	20	4 000	62 500	49 500	80 500	950	755	4 500	630	3 800	1.2	7.2
80	3X14X12	20	4 000	81 000	64 500	117 000	1 380	1 530	8 350	1 280	7 000	1.7	1.2
105	14×20×17	22 5	3 990	107 000	84 500	140 000	2 140	1 740	9 750	1 460	8 150	2.2	12.3
105	14,20,17	22.5	5 550	131 000	104 000	187 000	2 860	3 000	15 600	2 5 2 0	13 100	2.9	12.0
120	16×23×20	30	3 960	158 000	125 000	198 000	3 600	3 000	16 300	2 5 1 0	13 700	3.7	16.9
120	10×23×20	30	3 900	193 000	153 000	264 000	4 850	5 150	26 300	4 350	22 100	4.7	10.9

2) The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

 $C_{\rm so}$; the basic dynamic load rating for 50 km rated fatigue life $C_{\rm so}$; the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.

3) High-precision grade and medium preload of random-matching type are available for high-carbon steel products.

NSK

NH-EM (High-load type / Standard) NH-GM (Super-high-load type / Long) NH 30 1200 EM C 2 -** PC Z Series name Size Rail length (mm) Ball slide shape code (See page A114.) Material/surface treatment code (See Table 21.)

C: Special high carbon steel (NSK standard), K: Stainless steel

Front view of EM and GM types

Side view of GM type

_(N)	L d	
IT r	<u>L</u> ,	
) ++++		

	As	sem	bly					Bal	slide								
Model No.	Height			Width	Length		Mounting hole Grease fitting				g	Width	Height				
IVIOUEI INO.	Н	E	W_2	w	L	В	J	$M \times \text{pitch} \times \ell$	<i>Q</i> ₂	L ₁	К	Т	Hole size	<i>T</i> ₁	N	<i>W</i> ₁	H_1
NH15EM NH15GM	24	4.6	16	47	55 74	38	30	M5×0.8×7	4.4	39 58	19.4	8	ø 3	4.5	3.3	15	15
NH20EM NH20GM	30	5	21.5	63	69.8 91.8	53	40	M6×1×9.5	5.3	50 72	25	10	M6×0.75	5	11	20	18
NH25EM NH25GM	36	7	23.5	70	79 107	57	45	M8×1.25×10 (M8×1.25×11.5)	6.8	58 86	29	11 (12)	M6×0.75	6	11	23	22
NH30EM NH30GM	42	9	31	90	98.6 124.6	72	52	M10×1.5×12 (M10×1.5×14.5)	8.6	72 98	33	11 (15)	M6×0.75	7	11	28	26
NH35EM NH35GM	48	9.5	33	100	109 143	82	62	M10×1.5×13	8.6	80 114	38.5	12	M6×0.75	8	11	34	29
NH45EM NH45GM	60	14	37.5	120	139 171	100	80	M12×1.75×15	10.5	105 137	46	13	Rc1/8	10	13	45	38
NH55EM NH55GM	70	15	43.5	140	163 201	116	95	M14×2×18	12.5	126 164	55	15	Rc1/8	11	13	53	44
NH65EM NH65GM	90	16	53.5	170	193 253	142	110	M16×2×24	14.6	147 207	74	23	Rc1/8	19	13	63	53

Notes: 1) Parenthesized dimensions are for items made of stainless steel.

2) External appearance of stainless steel ball slides differs from those of carbon steel ball slides.

Option code K: Equipped with NSK K1 -F: Fluoride low temperature chrome plating-k32 grease -F56: Fluoride low temperature chrome plating-k12 grease Preload code No code: Fins clearance, 2: Slight preload, H Mailum preload Material code No code: Special high carbon steel (NSK standard), 5: Sainless steel

Reference number for rail of random-matching type Rail N1H30 1200 L C N -** PC Z

Random-matching rail series of	code
N1H: NH Series random-matc	hing rail
Size	
Rail length (mm)	
Rail length (mm) Rail shape code: L	

Rail						Basi	ic load ra	ating				We	ight
Pitch	Mounting	G	Max. length	³Dyn	amic	Static		Static	momen	t (N·m)		Ball	Rail
	bolt hole		L_{0max} .	[50km]	[100km]	C_0	M _{RO}	N	1 _{PO}	٨	1 _{YO}	slide	
F	$d \times D \times h$	(reference)	() for stainless	C ₅₀ (N)	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
60	4.5×7.5×5.3	20	2 980	14 200	11 300	20 700	108	94.5			480	0.17	1.6
			(1 800)	18 100	14 400	32 000	166	216	1 1 5 0	181	965	0.25	
60	6×9.5×8.5	20	3 960	23 700	18 800	32 500	219	185	1 1 4 0	155	955	0.45	2.6
00	0,0.0,0.0	20	(3 500)	30 000	24 000	50 500	340	420	2 2 3 0	355	1 870	0.65	2.0
60	7110	20	3 960	33 500	26 800	46 000	360	320	1 840	267	1 540	0.63	3.6
60	7×11×9	20	(3 500)	45 500	36 500	71 000	555	725	3 700	610	3 100	0.93	3.0
	0 1 1 1 0	0.0	4 000	47 000	37 500	63 000	600	505	3 150	425	2 650	1.2	5.0
80	9×14×12	20	(3 500)	61 000	48 500	91 500	870	1 030	5 600	865	4 700	1.6	5.2
00	0.11.1.10	20		62 500	49 500	80 500	950	755	4 500	630	3 800	1.7	7.0
80	9×14×12	20	4 000	81 000	64 500	117 000	1 380	1 530	8 350	1 280	7 000	2.4	7.2
105	14×20×17	22.5	3 990	107 000	84 500	140 000	2 1 4 0	1 740	9 750	1 460	8 150	3	12.3
105	14×20×17	22.5	3 990	131 000	104 000	187 000	2 860	3 000	15 600	2 520	13 100	3.9	12.3
120	16×23×20	30	3 960	158 000	125 000	198 000	3 600	3 000	16 300	2 510	13 700	5	16.9
120	10×23×20	30	3 960	193 000	153 000	264 000	4 850	5 150	26 300	4 350	22 100	6.5	10.9
150	18×26×22	35	3 900	239 000	190 000	281 000	6 150	4 950	27 900	4 150	23 400	10	24.3
150	10x20x22	30	3 900	310 000	246 000	410 000	8 950	10 100	51 500	8 450	43 500	14.1	24.3

3) The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

 C_{so} , the basic dynamic load rating for 50 km rated fatigue life C_{so} ; the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.

A-5-1.2 VH Series

1. Features

(1) High-performance end seals

High-performance end seals with a multi-lip structure prevent the entry of various foreign matters.

(2) NSK K1[™] lubrication unit (standard)

Outstanding lubrication support of NSK K1 further improves sealing capability and durability. Additional NSK K1 units can be mounted for specific usage conditions and environments.

(3) Tapped holes on a rail bottom surface (optional)

In addition to standard mounting bolt holes (counterbores on a rail top surface), a specification for tapped holes on a rail bottom surface for enhanced sealing capability is available for the VH Series. (Refer to the dimension table.)

(4) High self-aligning capability (rolling direction)

Same as the DF combination in angular contact bearings, self-aligning capability is high because the cross point of the contact lines of balls and grooves comes inside, reducing moment rigidity.

This increases the capacity to absorb errors in installation.

(5) High load carrying capacity to vertical direction

The contact angle is set at 50 degrees, thus increasing load carrying capacity as well as rigidity in vertical direction.

(6) High resistance against impact load

The bottom ball groove is formed in Gothic arch and the center of the top and bottom grooves are offset as shown in Fig. 2. The vertical load is generally carried by the top rows, at where balls are contacting at two points. Because of this design, the bottom rows will carry load when a large impact load

is applied vertically as shown in Fig. 3. This assures high resistance to the impact load.

(7) High accuracy

As showing in Fig. 4, fixing the master rollers to the ball grooves is easy thanks to the Gothic arch groove. This makes easy and accurate measuring of ball grooves.

(8) Random matching type

Random-matching of rails and ball slides are available.

(9) Improve rating life dramatically

New ball groove geometry is introduced,

End seal

Fig. 1 VH Series

Fig. 2 Enlarged illustration of the offset Gothic arch groove

Fig. 3 When load is applied

Fig. 4 Rail grinding and measuring

which has been developed by utilizing NSK's state-of-the-art tribological and analytical technologies. Due to the optimized distribution of contact surface pressures, the rating life has dramatically increased. As compared with the conventional products, the load rating capacity has increased to 1.3 times, while the life span has increased to twice^{*1}.

*1: Representative values of series.

Comparison with NSK standard products

Less than 1/10 the level of fine contaminants

: VH30AN

Results of dust-proof tests reveal that the entry of fine contaminants is reduced to less than one-tenth of existing standard series due to improvements in sealing capability.

Test sample Speed Contaminant

: 16.7 mm/sec

: Graphite powder (average grain size: 0.037 mm) + Grease

Operating life under contaminated environments is more than 5 times longer

Durability test with rubber fragments

Extreme durability tests under contaminated environments using rubber fragments show that durability of the VH Series extended more than five times longer than the existing standard series, as shown in the graph.

: VH30AN, preload code Z1 Test sample (preload of 245 N) Rail orientation : Horizontal (wall mount) Speed : 500 mm/sec Lubrication : AS2 grease (prepacked AS2 only) Contaminant : Rubber fragments

Durability test with fine wood particles

Extreme durability tests in a contaminated environment with fine wood particles show that durability of the VH Series is more than doubled

Before the passage of ball slide (Heavily contaminated with wood particle) compared to the standard series, as shown in the

graph.

Speed

Test sample : VH30AN (preload of 3 200 N) Rail orientation : Horizontal (wall mount) : 400 mm/sec Lubrication : AS2 grease (prepacked AS2 only) Contaminant : Fine wood particles

After the passage of ball slide (All contaminant particles are swept away)

The data shown in the catalog are the results of our tests, and no warranty is given to sealing performance on actual usage on machinery. Sealing performance is affected by usage environment and lubrication conditions. Dust covers and other measures to keep machinery free of dust are recommended.

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

VH Series

VH Series

2. Ball slide shape

NSK

3. Accuracy and preload

(1) Running parallelism of ball slide

			Table 1			Unit: µm	
		Preload	led assembly (not random m	atching)	Random- matching type	H
Rail length (mm) over or less	Ultra precision K3	Super precision K4	High precision K5	Precision grade K6	Normal grade KN	Normal grade KC	Series
- 50	2	2	2	4.5	6	6	
50 - 80	2	2	3	5	6	6	
80 - 125	2	2	3.5	5.5	6.5	6.5	
125 – 200	2	2	4	6	7	7	
200 - 250	2	2.5	5	7	8	8	
250 – 315	2	2.5	5	8	9	9	
315 - 400	2	3	6	9	11	11	
400 - 500	2	3	6	10	12	12	
500 - 630	2	3.5	7	12	14	14	
630 - 800	2	4.5	8	14	16	16	
800 - 1 000	2.5	5	9	16	18	18	
1 000 – 1 250	3	6	10	17	20	20	
1 250 – 1 600	4	7	11	19	23	23	
1 600 – 2 000	4.5	8	13	21	26	26	
2 000 – 2 500	5	10	15	22	29	29	
2 500 – 3 150	6	11	17	25	32	32	
3 150 – 4 000	9	16	23	30	34	34	

(2) Accuracy standard

The preloaded assembly has five accuracy grades; Ultra precision K3, Super precision K4, High precision K5, Precision K6, and Normal KN grades, while the random-matching type has Normal KC grade only. • Tolerance of preloaded assembly

	Table 2 Uni									
Accuracy grade Characteristics	Ultra precision K3	Super precision K4	High precision K5	Precision grade K6	Normal grade KN					
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 3	±10 5	±20 7	±40 15	±80 25					
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 3	±15 7	±25 10	±50 20	±100 30					
Running parallelism of surface C to surface A Running parallelism of surface D to surface B		Shown in Ta	ble 1, Fig. 5 an	id Fig. 6						

• Tolerance of random-matching type: Normal grade KC

	Table 3	Unit: μm
Model No. Characteristics	VH15, 20, 25, 30, 35	VH45, 55
Mounting height H	±20	±30
Variation of mounting height H	15① 30②	201 352
Mounting width W_2 or W_3	±30	±35
Variation of mounting width W_2 or W_3	25	30
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	See Table 1, F	g. 5 and Fig. 6

Note: ① Variation on the same rail ② Variation on multiple rails

(3) Combinations of accuracy and preload

			Table 4				
				Accurac	cy grade		
		Ultra precision	Super precision	High Precision	Precision grade	Normal grade	Normal grade
Wit	th NSK K1 lubrication unit	K3	K4	K5	K6	KN	КС
	Fine clearance Z0	0	0	0	0	0	_
	Slight preload Z1	0	0	0	0	0	_
Preload	Medium preload Z3	0	0	0	0	_	_
Ŧ	Random-matching type with fine clearance ZT	_	_	_	_	_	0
	Random-matching type with slight preload ZZ	_		_	_	_	0

(4) Assembled accuracy

Fig. 5 Special high carbon steel

Fig. 6 Stainless steel

NSK

(5) Preload and rigidity

We offer five levels of preload: Slight preload Z1, Medium preload Z3 and Fine clearance Z0, along with random-matching type of Fine clearance ZT and Slight preload ZZ.

Preload and rigidity of preloaded assembly

			Table 5				
		Drala	ad (NI)		Rigidity	(N/µm)	
	Model No.	Freioa	ad (N)	Vertical of	direction	Lateral	direction
	Model No.	Slight preload	Medium preload	Slight preload	Medium preload	Slight preload	Medium preload
		Z1	Z3	Z1	Z3	Z1	Z3
	VH15 AN, EM	78	490	137	226	98	186
	VH20 AN, EM	147	835	186	335	137	245
type	VH25 AN, AL, EM	196	1 270	206	380	147	284
	VH30 AN, AL	245	1 570	216	400	157	294
0 <u>-</u>	VH30 EM	294	1 770	265	480	186	355
High-load	VH35 AN, AL, EM	390	2 350	305	560	216	390
-	VH45 AN, AL, EM	635	3 900	400	745	284	540
	VH55 AN, AL, EM	980	5 900	490	910	345	645
type	VH15 BN, GM	98	685	196	345	137	284
	VH20 BN, GM	196	1 080	265	480	196	355
oac	VH25 BN, BL, GM	245	1 570	294	560	216	400
l-dg	VH30 BN, BL, GM	390	2 260	360	665	265	480
-hi	VH35 BN, BL, GM	490	2 940	430	795	305	570
Super-high-load	VH45 BN, BL, GM	785	4 800	520	960	370	695
ິ	VH55 BN, BL, GM	1 180	7 050	635	1 170	440	835

Note: Clearance for Fine clearance Z0 is 0 to 3 µm. Therefore, preload is zero.

However, Z0 of PN grade is 0 to 15 µm.

· Preload of random-matching type

	Table 6	Unit: µm
Model No.	Fine clearance	Slight preload
Model No.	ZT	ZZ
VH15	-4 - 15	-4 - 0
VH20		-5 - 0
VH25		-5 - 0
VH30	_5 - 15	-7 - 0
VH35		-7 - 0
VH45		-7 - 0
VH55		-9 - 0

Note: Minus sign denotes that a value is an amount of preload (elastic deformation of balls).

4. Maximum rail length

Table 7 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grade.

	Table 7 Length limitations of rails											
Series	Size											
Series	Material	15	20	25	30	35	45	55				
VH	Special high carbon steel	2 000	3 960	3 960	4 000	4 000	3 990	3 960				
VП	Stainless steel	1 800	3 500	3 500	3 500							

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK. A138

5. Installation

(1) Permissible values of mounting error

Table 8									
Value	Preload				Model No.				
value	Fleidau	VH15	VH20	VH25	VH30	VH35	VH45	VH55	
	Z0, ZT	22	30	40	45	55	65	80	
Permissible values of	Z1, ZZ	18	20	25	30	35	45	55	
parallelism in two rails e ₁	Z3	13	15	20	25	30	40	45	
Permissible values of	Z0, ZT			375	5 µm/500 r	nm			
parallelism (height) in two rails e_2	Z1, ZZ, Z3			33() µm/500 r	nm			

(2) Shoulder height of the mounting surface and corner radius r

		Table 9		Unit: mm
Madal Na	Corner radiu	s (maximum)	Shoulder height	
Model No.	ľ _a	ſ	H	Η"
VH15	0.5	0.5	4	4
VH20	0.5	0.5	4.5	5
VH25	0.5	0.5	5	5
VH30	0.5	0.5	6	6
VH35	0.5	0.5	6	6
VH45	0.7	0.7	8	8
VH55	0.7	0.7	10	10

(3) Specification for tapped holes on a rail bottom surface

- · Applicable accuracy grades are precision grade (K6) and normal grades (KN and KC) only.
- The minimum rail length for production is 400 mm.
- . The tapping pitch is the same as the pitch for regular mounting bolt holes. Please refer to the dimension table.

6. Lubrication components

Refer to pages A38 and D13 for the lubrication of linear guides.

(1) Types of lubrication accessories

Fig. 12 and Table 10 show grease fittings and tube fittings.

We provide lubrication accessories with extended thread body length (L) for the addition of dust-proof accessories such as NSK K1 lubrication unit, double seal and protector.

We provide a suitable lubrication accessory for the special requirement on dust-proof accessories.

Consult NSK for a lubrication accessory with extended length of thread body for your convenience of replenishing lubricant.

Please ask NSK for stainless lubrication accessories.

(2) Mounting position of lubrication accessories

The standard position of grease fittings is the end face of ball slide. We mount them on a side of end cap for an option. (Fig. 13)

Please consult NSK for installation of grease or tube fittings to the ball slide body or side of end cap.

When using a piping unit with thread of M6 \times 1, you require a connector to connect to a grease fitting mounting hole with M6 \times 0.75. The connector is available from NSK.

Fig. 13 Mounting position of lubrication accessories

Grease fitting

Drive-in type (ϕ 3) A type

NSK

B type

(M6 × 0.75 or R1/8)

C type

Fig. 12 Grease fitting and tube fitting

	Т	able 10	Unit: mm	
Model No.	Dust-proof	Grease fitting	Tube fitting	
	specification	Thread body length L	Thread body length L	
	Standard*	10	-	
VH15	Double seal	**	-	
	Protector	**	-	
	Standard*	12	-	
VH20	Double seal	18	-	
	Protector	18	-	
	Standard*	12	16	
VH25	Double seal	18	23***	
	Protector	18	18	
	Standard*	14	18	
VH30	Double seal	22	25	
	Protector	22	19	
	Standard*	14	15	
VH35	Double seal	22	25	
	Protector	22	22	
VH45	Standard*	18	21.5	
	Double seal	22	32	
	Protector	28	30	
VH55	Standard*	18	20	
	Double seal	22	32	
	Protector	28	30	

*) NSK K1 units are mounted as a standard specification for VH series.

**) A connector is required for grease fitting. Please contact NSK

***) Only available for AN and BN type ball slides.

VH Series

7. Dust-proof components

(1) Standard specification

To keep foreign matters from entering inside the ball slide, VH Series has an end seal on both ends, and bottom seals at the bottom.

Two NSK K1, one at each end, are installed as the standard equipment.

Fig. 14

Table 11 Seal friction per ball slide (maximum value)

	le II Sea	al friction	per ball s	lide (max	amum va	iue)	Unit: N
Series Size	15	20	25	30	35	45	55
VH	11	13	14	17	23	33	44

(2) Double seal and protector

For VH Series, double-seal and protector can be installed only before shipping from the factory. Please consult NSK when you require them. Table 12 shows the ball slide length when a double seal set and a protector are installed.

Fig. 15 Double seal

Fig. 16 Protector

Ball slide		Ball slide		Ball slide length L		
Model No.	length	model	Standard	Double seal installation	Protector installation	
VH15	Standard type	AN, EM	70.6	81.6	77	<
	Long type	BN, GM	89.6	100.6	96	VHS
VH20	Standard type	AN, EM	87.4	100.4	94.2	ě
VH20	Long type	BN, GM	109.4	122.4	116.2	eries
VH25	Standard type	AN, AL, EM	97	110	104.4	
VHZ5	Long type	BN, BL, GM	125	138	132.4	
VH30	Standard type	AN, AL	104.4	120.4	114.8	
	Stanuaru type	EM	117.4	133.4	127.8	
	Long type	BN, BL, GM	143.4	159.4	153.8	
VH35	Standard type	AN, AL, EM	128.8	144.8	139.2	
VH35	Long type	BN, BL, GM	162.8	178.8	173.2	
VH45	Standard type	AN, AL, EM	161.4	180.4	174.2	
VH45	Long type	BN, BL, GM	193.4	212.4	206.2	
VH55	Standard type	AN, AL, EM	185.4	204.4	198.2	
	Long type	BN, BL, GM	223.4	242.4	236.2	

NSK K1 NSK K1 End seal End seal Spacer for high performance seal Spacer for high performance seal Protector End seal Double seal Protector

(3) Cap to plug the rail mounting bolt hole Table 13 Caps to plug rail bolt hole

Model No.	Bolt to	Сар	Quantity
	secure rail	reference No.	/case
VH15	M4	LG-CAP/M4	20
VH20	M5	LG-CAP/M5	20
VH25	M6	LG-CAP/M6	20
VH30, VH35	M8	LG-CAP/M8	20
VH45	M12	LG-CAP/M12	20
VH55	M14	LG-CAP/M14	20

(4) Inner seal

The availability of inner seal is limited to the models shown below.

Table 14		
Series	Model No.	
VH	VH20, VH25, VH30, VH45, VH55	

Table 12 Dimension of installing dust-proof optional components

Unit: mm

NSK
8. Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

(2) Reference number for random-matching type

The reference number coding for the assembly of random-matching type is the same as that of preloaded assembly. However, the preload code of "fine clearance T" and "slight preload Z" is only applicable (refer to page A137).

Table 15 Material/surface treatment code

Code	Description
С	Special high carbon steel (NSK standard) + counterbores on a rail top surface
К	Stainless steel + counterbores on a rail top surface
D	Special high carbon steel with surface treatment + counterbores on a rail top surface
Н	Stainless steel with surface treatment + counterbores on a rail top surface
V	Special high carbon steel (NSK standard) + tapped holes on a rail bottom surface
J	Stainless steel + tapped holes on a rail bottom surface
W	Special high carbon steel with surface treatment + tapped holes on a rail bottom surface
S	Stainless steel with surface treatment + tapped holes on a rail bottom surface
Z	Other, special

Table 16 Accuracy code

	-
Accuracy	Standard (with NSK K1)
Ultra precision grade	К3
Super precision grade	K4
High precision grade	K5
Precision grade	K6
Normal grade	KN
Normal grade (random-matching type)	KC

Note: Refer to page A38 for NSK K1 lubrication unit.

NSK

9. Dimensions VH-AN (High-load type / Standard) VH-BN (Super-high-load type/ Long)

ьd

Specification for tapped holes on a rail Side view of BN type bottom face

W2 W_1

	(N)	,		
	ĺτ,	L L1		K1 NSK K1
		- J	-	End seal
- T				
T1	I T	4		
-	目相			
	┌╨┻			

 $n \times F$

End seal

(G)

	A	sseml	bly		Ball slide												
Model No.	Height			Width	Length Mounting hole							Gre	ase f	fitting	Width	Height	
WIDGEI NO.	Н	Е	W_2	w	L	В	./	$M \times \text{pitch} \times \ell$	L	к	Т	K.	Hole size	T.	N	W_1	H1
VH15AN VH15BN	28	4.6	9.5		70.6 (77) 89.6 (96)		26	M4×0.7×6	39 58		8	4.5		8.5		15	15
VH20AN VH20BN	30	5	12	44	87.4 (94.2) 109.4 (116.2)	32	36 50	M5×0.8×6	50 72	25	12	4.5	M6×0.75	5	11.1 (12.3)	20	18
VH25AN VH25BN	40	7	12.5	48	97 (104.4) 125 (132.4)	35	35 50	M6×1×9	58 86	33	12	5	M6×0.75	10	9.6 (12.9)	23	22
VH30AN VH30BN	45	9	16	60	104.4 (114.8) 143.4 (153.8)	40	40 60	M8×1.25×10	59 98	36	14	5	M6×0.75	10	11.4 (14.2)	28	26
VH35AN VH35BN	55	9.5	18	70	128.8 (139.2) 162.8 (173.2)	50	50 72	M8×1.25×12	80 114	45.5	15	5.5	M6×0.75	15	10.9 (13.7)	34	29
VH45AN VH45BN	70	14	20.5	86	161.4 (174.2) 193.4 (206.2)	60	60 80	M10×1.5×17	105 137	56	17	6.5	Rc1/8	20	12.5(14.1)	45	38
VH55AN VH55BN	80	15	23.5	100	185.4 (198.2) 223.4 (236.2)	75	75 95	M12×1.75×18	126 164	65	18	6.5	Rc1/8	21	12.5 (14.1)	53	44

Notes: 1) Figure inside () is the dimension when equipped with the protector.

2) VH Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail. 3) External appearance of stainless steel ball slides differs from those of carbon steel ball slides.

Reference number for ball slide of random-matching type

Reference number for rail of random-matching type

									Onit					
	Rail						Bas	ic load	rating				We	ight
Pitch		Tapped hole	G	Max. length	⁴⁾ Dynamic		Static	Static mome			t (N∙m)		Ball	Rail
	bolt hole			L_{0max} .	[50km]	[100km]	C_{\circ}	M _{RO}	N	1 _{PO}	٨	1 _{YO}	slide	
F	$d \times D \times h$	$M_2 \times \text{pitch} \times \ell_2$	(reference)	() for stainless	$C_{50}(N)$	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
60	4.5×7.5×5.3	M5×0.8×8	20	2 000	14 200	11 300	20 700	108	94.5	575			0.18	116
00	1.0/1.0/0.0	1110/0.0/0	20	[1 800]	18 100	14 400	32 000	166	216	1 1 1 5 0	181	965	0.26	1.0
60	6×9.5×8.5	M6×1×10	20	3 960	23 700	18 800	32 500	219	185	1 1 4 0	155	955	0.33	2.6
60	0×9.5×8.5		20	[3 500]	30 000	24 000	50 500	340	420	2 2 3 0	355	1 870	0.48	2.0
60	7×11×9	M6×1×12	20	3 960	33 500	26 800	46 000	360	320	1 840	267	1 540	0.55	3.6
00	/ / / / / / / / / / / / / / / / / / / /		20	[3 500]	45 500	36 500	71 000	555	725	3 700	610	3 100	0.82	3.0
80	9x14x12	M8×1.25×15	20	4 000	41 000	32 500	51 500	490	350	2 290	292	1 920	0.77	5.2
00	9X14X12	IVIOX 1.20X 10	20	[3 500]	61 000	48 500	91 500	870	1 030	5 600	865	4 700	1.3	0.Z
80	9×14×12	M8×1.25×17	20	4 000	62 500	49 500	80 500	950	755	4 500	630	3 800	1.5	7.2
80	9×14×12	1VI8X1.25X17	20	4 000	81 000	64 500	117 000	1 380	1 530	8 350	1 280	7 000	2.1	/.Z
105	14,20,17	M12×1.75×24	22 5	3 990	107 000	84 500	140 000	2 1 4 0	1 740	9 750	1 460	8 150	3.0	12.3
105	14x20x17	IVI I Z X I . 7 3 X Z 4	22.5	3 990	131 000	104 000	187 000	2 860	3 000	15 600	2 520	13 100	3.9	12.3
120	16×23×20	M14×2×24	30	3 960	158 000	125 000	198 000	3 600	3 000	16 300	2 510	13 700	4.7	16.9
120	10x23x20	IVI14XZXZ4	30	3 900	193 000	153 000	264 000	4 850	5 150	26 300	4 350	22 100	6.1	10.9

4) The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

 $C_{\rm sor}$ the basic dynamic load rating for 50 km rated fatigue life $C_{\rm sor}$ the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.

NSK

Unit[,] mm

VH-AL (High-load type / Standard) VH-BL (Super-high-load type / Long) VH 30 1000 ALC2 -** KCZ Series name Size Preload code (See page A137.) 0: Z0, 1: Z1, 3: Z3, T: ZT, Z: ZZ Rail length (mm) Accuracy code (See Table 16.) Ball slide shape code (See page A135.) Design serial number Material/surface treatment code (See Table 15.) Added to the reference number. C: Special high carbon steel (NSK standard), K: Stainless steel Number of ball slides per rail

Front view of AL and BL type

NSK K1 End seal φd n×F

Specification for tapped holes on a rail bottom face

Side view of BL type

<u>(N)</u>	L
	L ₁ K ₁ End seal
重祖	

		•			1	Ball slide												
		A	ssem	bly					Ball	slide	9							
Model	No.	Height			Width	Length		Мо	unting hole					Gre	ase	fitting	Width	Height
		Н	E	<i>W</i> ₂	w	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	К	Т	<i>K</i> ₁	Hole size	T_1	N	W_1	H_1
VH25/ VH25		36	7	12.5	48	97 (104.4 125 (132.4		35 50	M6×1×6	58 86	29	12	5	M6×0.75	6	9.6 (12.9)	23	22
VH30/ VH30		42	9	16	60	104.4 (114.8 143.4 (153.8		40 60	M8×1.25×8	59 98	33	14	5	M6×0.75	7	11.4 (14.2)	28	26
VH35/ VH35/		48	9.5	18	70	11628(1/32	\$ 50	50 72	M8×1.25×8	80 114	38.5	15	5.5	M6×0.75	8	10.9 (13.7)	34	29
VH45/ VH45		60	14	20.5	86	193.4 (206.2		60 80	M10×1.5×10	105 137	46	17	6.5	Rc1/8	10	12.5(14.1)	45	38
VH55/ VH55/		70	15	23.5	100	185.4 (198.2 223.4 (236.2	1 /5	75 95	M12×1.75×13	126 164	155	15	6.5	Rc1/8	11	12.5 (14.1)	53	44

Notes: 1) Figure inside () is the dimension when equipped with the protector.

2) VH Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.

3) External appearance of stainless steel ball slides differs from those of carbon steel ball slides.

Reference number for ball slide of random-matching type

H1			
W1	G G	$n \times F$ L_0	(G)

	Rail						Bas	ic load	rating				We	ight
Pitch		Tapped hole	G	Max. length	⁴⁾ Dyn	⁴⁾ Dynamic			Static I	momen	t (N∙m)		Ball	Rail
	bolt hole			L_{0max} .	[50km]	[100km]	C_{\circ}	M _{RO}	N	1 _{PO}	N	1 _{YO}	slide	
F	$d \times D \times h$	$M_2 \times \text{pitch} \times \ell_2$	(reference)	() for stainless	$C_{50}(N)$	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
60	7×11×9	M6×1×12	20	3 960	33 500	26 800	46 000	360	320	1 840			0.46	1 36
00	771170		20	[3 500]	45 500	36 500	71 000	555	725	3 700	610	3 100	0.69	0.0
80	9×14×12	M8×1.25×15	20	4 000	41 000	32 500	51 500	490	350	2 290	-		0.69	62
00	0/14/12	10/11/20/10	20	[3 500]	61 000	48 500	91 500	870	1 0 3 0	5 600	865	4 700	1.16	0.2
80	9×14×12	M8×1.25×17	20	4 000	62 500	49 500	80 500	950	755	4 500	630	3 800	1.2	7.2
00	3/14/12	10001.20017	20	4 000	81 000	64 500	117 000	1 380	1 530	8 350	1 280	7 000	1.7	1.2
105	1/1~20~17	M12×1.75×24	22 5	3 000	107 000	84 500	140 000	2 140	1 740	9 750	1 460	8 150	2.2	12.3
105	14,20,17	10112 X 1.7 3 X 24	22.5	0 000	131 000	104 000	187 000	2 860	3 000	15 600	2 5 2 0	13 100	2.9	12.0
120	16×23×20	M14×2×24	30	3 960	158 000	125 000	198 000	3 600		16 300			-	16.9
120	10/23/20	1011472724	30	3 300	193 000	153 000	264 000	4 850	5 150	26 300	4 3 5 0	22 100	4.7	10.3

4) The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

 $C_{\rm sor}$ the basic dynamic load rating for 50 km rated fatigue life $C_{\rm sor}$ the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.

VH Series

Unit: mm

Front view of EM and GM type

Side view of EM type

 $\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array}$ } \\
\end{array}
} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array}
} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array}
} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array}
} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array}
} \\
\end{array} \\
\end{array} \\
\end{array} \\
\bigg
} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array}
} \\
\end{array} \\
\end{array}
} \\
\end{array} \\
\bigg
} \\
\end{array} \\
\bigg
} \\

Specification for tapped holes on a rail bottom face

	As	sem	bly		Ball slide													
Model No	Height			Width	Length		Ν	lounting hole						Grease fitting		Width	Height	
NOUEINO								$Q_1 \times l_1$						Hole				
	Н	Ε	W_2	W	L	В	J	$M_1 \times \text{pitch} \times \ell_1$	Q_2	L_1	Κ	Т	K_1	size	T_1	Ν	W_1	H_1
VH15EM VH15GM	24	4.6	16	47	70.6〈 77〉 89.6〈 96〉	38	30	M5×0.8×7	4.4	39 58	19.4	8	4.5	ø 3	4.5	1 〈 8.2〉	15	15
VH20EM VH20GM	30	5	21.5	63	87.4 (94.2) 109.4 (116.2)	53	40	M6×1×9.5	5.3	50 72	25	10	4.5	M6×0.75	5	11.1 (12.3)	20	18
VH25EM VH25GM	36	7	23.5	70	97 (104.4) 125 (132.4)	5/	45	M8×1.25×10 [M8×1.25×11.5]	6.8	58 86	179	11 [12]	5	M6×0.75	6	9.6 (12.9)	23	22
VH30EM VH30GM	42	9	31	90	117.4 (127.8) 143.4 (153.8)	1 / /	52	M10×1.5×12 [M10×1.5×14.5]	8.6	72 98	33	11 [15]	5	M6×0.75	7	11.4 (14.2)	28	26
VH35EM VH35GM	48	9.5	33	100	162.8(1/3.2)	82			8.6	114	38.5	12	5.5	M6×0.75	8	10.9 (13.7)	34	29
VH45EM VH45GM	60	14	37.5	120	161.4 (174.2) 193.4 (206.2)	100	80	M12×1.75×15	10.5	105 137	46	13	6.5	Rc1/8	10	12.5(14.1)	45	38
VH55EM VH55GM	70	15	43.5	140	185.4 (198.2) 223.4 (236.2)	116	95	M14×2×18	12.5	126 164	lhh	15	6.5	Rc1/8	11	12.5(14.1)	53	44

Side view of GM type

Notes: 1) Figure inside $\langle \rangle$ is the dimension when equipped with the protector

2) Figure inside [] is applied to stainless products.

3) VH Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.

4) External appearance of stainless steel ball slides differs from those of carbon steel ball slides.

Reference number for ball slide of random-matching type

Reference number for rail of random-matching type

	Rail						Bas	ic load	rating				We	ight
Pitch		Tapped hole	G	Max. length	5)Dyr	amic	Static		Static r	nomen	t (N·m)		Ball	Rail
	bolt hole			L _{0max} .	[50km]	[100km]	C_{0}	M _{RO}	N	1 _{PO}	N	1 _{YO}	slide	
F	$d \times D \times h$	$M_2 \times \text{pitch} \times \ell_2$	(reference)	() for stainless	C ₅₀ (N)	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
60	4.5×7.5×5.3	M5×0.8×8	20	2 000	14 200	11 300	20 700		94.5	575			0.17	116
			20	[1 800]	18 100	14 400	32 000	166	216	1 1 50	181	965	0.25	
60	6×9.5×8.5	M6×1×10	20	3 960	23 700	18 800	32 500	219	185	1 1 4 0	155	955	0.45	2.6
60	0×9.5×8.5		20	[3 500]	30 000	24 000	50 500	340	420	2 2 3 0	355	1 870	0.65	2.0
60	7×11×9	M6×1×12	20	3 960	33 500	26 800	46 000	360	320	1 840	267	1 540	0.63	3.6
00	/ / / / / / / / / / / / / / / / / / / /		20	[3 500]	45 500	36 500	71 000	555	725	3 700	610	3 100	0.93	3.0
80	9×14×12	M8×1.25×15	20	4 000	47 000	37 500	63 000	600	505	3 150	425	2 650	1.2	5.2
00	9X14X12	100001.20010	20	[3 500]	61 000	48 500	91 500	870	1 0 3 0	5 600	865	4 700	1.6	0.2
80	9×14×12	M8×1.25×17	20	4 000	62 500	49 500	80 500	950	755	4 500	630	3 800	1.7	7.2
80	3X14X12	100001.20017	20	4 000	81 000	64 500	117 000	1 380	1 530	8 350	1 280	7 000	2.4	1.2
105	14,20,17	M12×1.75×24	22 5	3 990	107 000	84 500	140 000	2 140	1 740	9 750	1 460	8 150	3.0	12.3
105	14X20X17	10112X1.75X24	22.0	3 990	131 000	104 000	187 000	2 860	3 000	15 600	2 520	13 100	3.9	12.3
120	16×23×20	M14×2×24	30	3 960	158 000	125 000	198 000	3 600	3 000	16 300	2 510	13 700	5.0	16.9
120	10723720	10114XZXZ4	30	5 900	193 000	153 000	264 000	4 850	5 150	26 300	4 350	22 100	6.5	10.9

5) The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

 C_{soi} the basic dynamic load rating for 50 km rated fatigue life C_{soi} the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.

VH Series

Unit: mm

A-5-1.3 TS Series

1. Features

(1) Inexpensive

Newly developed manufacturing process of rail and design of ball slide contribute to substantial cost reductions.

(2) High capacity

Optimum ball diameter for higher capacity design.

(3) High dust proof capability

Dust-tight high performance end seals, bottom seals, and inner seals are built-in as a standard feature. (Optional protector is available for protection against hot debris such as welding spatters or hard contaminants.)

(4) Maintenance free

NSK K1 lubrication unit is equipped as a standard specification for long-term maintenance-free operation.

2. Ball slide shape

(5) Rust prevention

NSK provides a lineup of products with antirust surface treatment for corrosive environments.

(6) Fast deliverv

Lineup of random-matching rails and ball slides supports and facilitates fast delivery.

3. Accuracy and preload

· Accuracy grade: Normal grade for transportation

- \cdot Torelance of mounting height *H*: ±0.1 mm
- · Running parallelism: 100 µm or less
- · Running parallelism (height): 500 µm/500 mm
- · Clearance: 60 µm or less

4. Maximum rail length

Table 1 shows the limitations of rail length.

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. In such a case, please consult NSK.

*) The maximum length of a rail coated with fluoride low temperature chrome plate is 4 000 mm (G = 80).

NSK

TS Series

5. Lubrication components

Refer to pages A38 and D13 for the lubrication of linear guides.

(1) Types of lubrication accessories

Fig. 1 and Table 2 show grease fittings and tube fittings.

(2) Mounting position of lubrication accessories

The standard position of grease fittings is the end face of ball slide. You may mount them on the side of end cap for an option. (**Fig. 2**)

Please consult NSK for installation of grease or tube fittings to the ball slide body or side of end cap.

When using a piping unit with thread of M6 \times 1, you require a connector for the connection to a grease fitting mounting hole with M6 \times 0.75. The connector is available from NSK.

Fig. 2

6. Dust-proof components (1) Standard specification

To keep contaminants from entering inside the ball slide, the TS Series has an end seal and NSK K1 on both ends, and bottom seals at the bottom. Also, the inner seal is a standard equipment. The series can be readily used in a normal environment.

Fig. 1 Grease fitting and tube fitting

	1	Table 2	Unit: mm
Model No.	Dust-proof	Grease fitting	Tube fitting
	specification	Thread body length L	Thread body length L
TS15	Standard*	5	-
1515	Protector	5	-
TS20	Standard*	5	6
1520	Protector	5	6
TS25	Standard*	5	6
1525	Protector	5	6
TS30	Standard*	5	6
1530	Protector	5	6
TS35	Standard*	5	6
1335	Protector	5	6

*) NSK K1 units are mounted as a standard specification for TS Series.

TS Series

(2) Protector

Please consult NSK as the protector for TS Series can be installed only before shipping from the factory.

Fig. 4 and Table 3 show the ball slide length when protector is installed.

Fig. 5 Protector

Fig. 4

Table 3 Dimension when equipped with the protector

Model No.	Ball slide length L					
woder No.	Standard length	Protector installation*				
TS15	72.2	77.6				
TS20	87	92.8				
TS25	100	106.4				
TS30	115	123.4				
TS35	135.8	144.2				

*) The table shows the ball slide length when one protector is installed in both ends.

(3) Cap to plug the rail mounting bolt hole

Table 4	Caps	to	plug	rail	bolt	hole
---------	------	----	------	------	------	------

Madal Na	Bolt to	Сар	Quantity
Model No.	secure rail	reference No.	/case
TS15	M4	LG-CAP/M4	20
TS20	M5	LG-CAP/M5	20
TS25	M6	LG-CAP/M6	20
TS30, TS35	M8	LG-CAP/M8	20

Note: Cap to plug the bolt hole for rail mounting is exclusive for rail design of type I.

7. Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for assembly of random-matching ball slide and rail

(2) Reference number for random-matching type

NSK

TS Series

8. Dimensions

W: Fluoride low temperature chrome plating/Tapped holes on a rail bottom surface (Type II)

Assembly Ball slide															
Model No. Height		Width	Length	Mounting hole		inting hole			Grease fitting		width	height	Pitch		
	H _{±0.1}	Ε	w	L	В	J	$M_1 imes ext{pitch} imes m{\ell}_1$	L ₁	К	Hole size	<i>T</i> ₁	N	<i>W</i> ₁	H_1	F
TS15AN	28	3	34	72.2	26	26	M4×0.7×6	39	25	ø 3	6.5	5	15	14	120
TS20AN	30	3	44	87	32	36	M5×0.8×8	50	27	M6×0.75	6.5	14	20	15	120
TS25AN	40	4	48	100	35	35	M6×1×9	58	36	M6×0.75	9.5	14	23	20	120
TS30AN	45	6.5	60	115	40	40	M8×1.25×10	70	38.5	M6×0.75	9.5	14	28	25	160
TS35AN	55	8	70	135.8	50	50	M8×1.25×12	81.8	47	M6×0.75	12	14	34	30	160

Notes: 1) TS Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.

Reference number for ball slide of random-matching type

Option code No code: No surface tratment + A52 grease -F: Fluoride low temperature chrome plating + A52 grease -F50: Fluoride low temperature chrome plating + L62 grease

Reference number for rail of random-matching type Rail T1S301200LPN -** PL S

Preload code: S S: Clearance of 60 µm or less Accuracy code: PL PL: Normal grade is only available. Design serial number Added to the reference number. *Butting rail specification N: Non-butting. L: Butting specification

*Please consult with NSK for butting rail specification.

Rail design : Type II

Unit: mm

Rail						Basi	c load	rating				Weight	
Mounti	ng hole	G	Max. length	²⁾ Dyr	namic	Static	5	Static r	nomer	nt (N∙m	ו)	Ball	Rail
Type I	Туре 🏾		L_{0max} .	[50km]	[100km]	C_{0}	M _{RO}	N	1 _{PO}	N	1 _{YO}	slide	
$d \times D \times h$	$M_2 \times \text{pitch} \times \ell_2$	(reference)	() for stainless	$C_{50}(N)$	$C_{100}(N)$	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
4.5×7.5×5.3	M4×0.7×6	20	1 960	9 800	7 800	11 800	92	63.5	585	63.5	585	0.21	1.5
6×9.5×8.5	M5×0.8×8	20	2 920	15 700	12 500	19 100	196	137	1 110	137	1 110	0.37	2.1
7×11×9	M6×1×9	20	4 000	21 800	17 300	26 000	320	217	1 730	217	1 730	0.47	3.4
9×14×12	M8×1.25×12	20	4 040*	31 000	24 800	37 500	565	395	2 810	395	2 810	0.77	5.3
9×14×12	M8×1.25×12	20	4 040*	46 500	37 000	53 000	970	635	4 750	635	4 750	1.3	7.7

2) The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

 C_{sol} the basic dynamic load rating for 50 km rated fatigue life C_{too} the basic dynamic load rating for 100 km rated fatigue life

Consult with NSK when using a TS Series in a single rail configuration.
 Maximum length of fluoride low-temperature chrome plated products is 4 000 (G = 80).

TS Series

NSK

A-5-1.4 NS Series

1. Features (1) Improve rating life dramatically

Based on the LS series characterized by reliability and performance, a significant increase in durability has been attained. New ball groove geometry is introduced, which has been developed by utilizing NSK's state-of-the-art tribological and analytical technologies. Due to the optimized distribution of contact surface pressures, the rating life has dramatically increased.

As compared with the LS Series, the load rating capacity of the NS series has increased to 1.3 times, while the life span has increased to twice⁻¹. These features enable you to design a machine with a longer life and downsize the machine. Thus, your design capability is greatly enhanced.

*1: Representative values of series.

(2) Ball circulation path with excellent highspeed property

By reexamining the design practice for the ball circulation path, we have attained smooth ball circulation and reduced noise level. So, NS series is suited for high-speed applications compared with the LS Series.

(3) All mounting dimensions are the same as those for the LS and SS Series

Regarding the mounting dimensions (mounting parts' dimensions), such as the mounting height, mounting width, mounting hole diameter/pitch of the linear guide, etc., the mounting dimensions of the NS Series remain the same as those of the conventional LS series and SS series. So, the new NS Series linear guides can be used without making any design changes.

(4) High self aligning capability (rolling direction)

Same as the DF combination in angular contact bearings, self-aligning capability is high because the cross point of the contact lines of balls and grooves comes inside, and thus reducing moment rigidity. This increases the capacity to absorb errors in installation.

(5) High load carrying capacity to vertical direction

The contact angle is set at 50 degrees, and thus increasing load carrying capacity as well as rigidity against the load in vertical direction.

(6) High resistance against impact load

The bottom ball groove is formed in Gothic arch and the center of the top and bottom grooves are offset as shown in **Fig. 2**. The vertical load is usually carried by top 2 rows, where balls are contacting at two points. Because of this design, the bottom rows will carry the load when a large impact load is applied as shown in **Fig. 3**. This assures high resistance to the impact load.

(7) High accuracy

As showing in **Fig. 4**, fixing the measuring rollers to the ball grooves is simple thanks to the Gothic arch groove. This makes easy and accurate measuring of ball grooves.

(8) Easy to handle, and designed with safety in mind.

Balls are retained in the retainer and do not fall out when the ball slide is withdrawn from the rail.

(9) Abundant models and sizes come in series.

Each size of NS Series has several ball slide models, rendering the linear guide available for numerous uses. The NS Series also has standardized long stainless- steel rail (maximum 3 500 mm).

(10) Fast delivery

Lineup of random-matching rails and ball slides supports and facilitates fast delivery.

High precision grade and medium preload types are also available in random matching. (Special highcarbon steel products)

Fig. 1 NS Series

Fig. 2 Enlarged illustration of the offset Gothic arch groove

Fig. 3 When load is applied

Fig. 4 Rail-grinding and measuring

Note: For customers who have used the former LS or SS series, NS series is recommended as a substitute. Please confirm the correlation between NS series and former ones on the comparative table at A319.

Note: High-precision grade and medium preload of random-matching type are not applicable to EL, JL, FL and KL models.

3. Accuracy and preload

(1) Running parallelism of ball slide

	Table 1												
	Prel	oaded asser	nbly (not ran	dom match	ing)	Random-ma	atching type						
Rail length (mm) over or less	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6	Normal grade PN	High precision PH	Normal grade PC						
- 50	2	2	2	4.5	6	2	6						
50 - 80	2	2	3	5	6	3	6						
80 - 125	2	2	3.5	5.5	6.5	3.5	6.5						
125 – 200	2	2	4	6	7	4	7						
200 - 250	2	2.5	5	7	8	5	8						
250 - 315	2	2.5	5	8	9	5	9						
315 – 400	2	3	6	9	11	6	11						
400 - 500	2	3	6	10	12	6	12						
500 - 630	2	3.5	7	12	14	7	14						
630 - 800	2	4.5	8	14	16	8	16						
800 – 1 000	2.5	5	9	16	18	9	18						
1 000 – 1 250	3	6	10	17	20	10	20						
1 250 – 1 600	4	7	11	19	23	11	23						
1 600 – 2 000	4.5	8	13	21	26	13	26						
2 000 – 2 500	5	10	15	22	29	15	29						
2 500 – 3 150	6	11	17	25	32	17	32						
3 150 – 4 000	9	16	23	30	34	23	34						

Table 1

(2) Accuracy standard

The preloaded assembly has five accuracy grades; Ultra precision P3, Super precision P4, High precision P5, Precision P6 and Normal PN grades, while the random-matching type has High-precision PH and Normal PC grade.

Tolerance of preloaded assembly

	Table 2 Unit: μm									
Accuracy grade Characteristics	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6	Normal grade PN					
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 3	±10 5	±20 7	±40 15	±80 25					
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 3	±15 7	±25 10	±50 20	±100 30					
Running parallelism of surface C to surface A Running parallelism of surface D to surface B		See Table	e 1, Fig. 5 and I	-ig. 6						

Tolerance of random-matching type

	Table 3	Unit: µm		
Model No. Characteristics	High precision grade PH	Normal grade PC		
Mounting height H	±20	±20		
Variation of mounting height H	15①	15①		
	30②	30②		
Mounting width W_2 or W_3	±30	±30		
Variation of mounting width W_2 or W_3	20	25		
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	See Table 1, Fig. 5 and Fig. 6			

Notes: ① Variation on the same rail ② Variation on multiple rails

A159

. . . .

(3) Combinations of accuracy and preload

			Table	4					
				Ac	ccuracy gra	de			
		Ultra precision	Super precision	High precision	Precision grade	Normal grade	High precision	Normal grade	SN
Wi	Without NSK K1 lubrication unit		P4	P5	P6	PN	PH	PC	
Wi	th NSK K1 lubrication unit	K3	K4	K5	K6	KN	КН	KC	Series
Wit	h NSK K1 for food and medical equipment	F3	F4	F5	F6	FN	FH	FC	~
	Fine clearance Z0	0	0	0	0	0	_	_	
	Slight preload Z1	0	0	0	0	0	_		
bad	Medium preload Z3	0	0	0	0	_	_	_	
Preload	Random-matching type with fine clearance ZT		_	_	_	_	_	0	
	Random-matching type with slight preload ZZ	_	_	_	_	_	0	0	
	Random-matching type with medium preload ZH	_	_	_	_	_	0	0	

(4) Assembled accuracy

Fig. 6 Stainless steel

(5) Preload and rigidity

We offer six levels of preload: Slight preload Z1, Medium preload Z3 and Fine clearance Z0, along with random-matching type of Medium preload ZH, Fine clearance ZT and Slight preload ZZ.

Preload and rigidity of preloaded assembly

Table 5 Rigidity $(N/\mu m)$ Preload (N) Vertical direction Lateral direction Model No. Slight preload Medium preload Slight preload Medium preload Slight preload |Medium preload Z1 Z3 Z1 Z3 Z1 Z3 NS15 AL, EM 69 390 127 226 88 167 NS20 AL, EM 88 540 147 284 108 206 NS25 AL, EM 147 880 206 370 147 275 Hiah-I NS30 AL, EM 245 1 370 255 460 186 345 NS35 AL, EM 1 960 305 550 400 345 216 NS15 CL, JM 49 294 78 147 59 108 NS20 CL, JM 69 390 108 186 78 137 NS25 CL, JM 127 235 88 177 98 635 Medium NS30 CL, JM 147 980 147 275 108 206 NS35 CL, JM 245 1 370 186 335 137 245

Note: Clearance for Fine clearance Z0 is 0 to 3µm. Therefore, preload is zero. However, Z0 of PN grade is 0 to 15µm.

· Clearance and preload of random-matching type

	Table 6 Unit: μm									
Model No.	Fine clearance	Slight preload	Medium preload							
Model No.	ZT	ZZ	ZH							
NS15	-4 — 15	-4 0	-7							
NS20	-4 — 15	-4 0	-7							
NS25	-5 — 15	-5 — 0	-9							
NS30	-5 — 15	-5 — 0	-9							
NS35	-5 — 15	-6 - 0	-10							

Note: Minus sign denotes that a value is an amount of preload (elastic deformation of balls).

4. Maximum rail length

Table 7 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grade.

Table 7 Length I	imitations of	f rails
------------------	---------------	---------

						Onit. min
Series	Size					
Genes	Material	15	20	25	30	35
NC	Special high carbon steel	2 920	3 960	3 960	4 000	4 000
NS	Stainless steel	1 700	3 500	3 500	3 500	3 500

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

I Init: mm

(1) Permissible values of mounting error

						Unit: µm
Value	Preload	Model No.				
value	Fleioau	NS15	NS20	NS25	NS30	NS35
Permissible values of	ZO, ZT	20	22	30	35	40
parallelism in two rails e	Z1, ZZ	15	17	20	25	30
	Z3, ZH	12	15	15	20	25
Permissible values of	Z0, ZT	375 μm/500 mm				
parallelism (height) in two rails e_2	Z1, ZZ, Z3, ZH		3	330 µm/500 mn	n	

Table 8

(2) Shoulder height of the mounting surface and corner radius r

		Table 9		Unit: mm
Model No.	Corner radius (maximum)		Shoulde	er height
would wo.	ľ,	Γ _b	H'	H"
NS15	0.5	0.5	4	4
NS20	0.5	0.5	4.5	5
NS25	0.5	0.5	5	5
NS30	0.5	0.5	6	6
NS35	0.5	0.5	6	6

6. Maximum allowable speed

An indication of the standard maximum allowable speed aiming at 10,000km operation with NS series under normal conditions is shown in Table 10. However, the maximum allowable speed can be affected by accuracy of installation, operating temperature, external load, etc. If the operation is made exceeding the permissible distance and speed, please consult NSK.

Table 10 Maximum allowable speed Unit: m/min

Size Series	15	20	25	30	35
NS	Э		300		

7. Lubrication components

Refer to pages A38 and D13 for the lubrication of linear guides.

(1) Types of lubrication accessories

Fig. 11 and Table 11 show grease fittings and tube fittings.

We provide lubrication accessories with extended thread body length (L) for the addition of dust-proof accessories such as NSK K1 lubrication unit, double seal and protector.

We provide a suitable lubrication accessory for the special requirement on dust-proof accessories.

Consult NSK for a lubrication accessory with extended length of thread body for your convenience of replenishing lubricant.

When you require stainless lubrication accessories, please ask NSK.

(2) Mounting position of lubrication accessories

The standard position of grease fittings is the end face of ball slide. We mount them on a side of end cap for an option. (**Fig. 12**)

Please consult NSK for installation of grease or tube fittings to the ball slide body or side of end cap.

When using a piping unit with thread of $M6 \times 1$, you require a connector to connect to a grease fitting mounting hole with $M6 \times 0.75$. The connector is available from NSK.

Fig. 12 Mounting position of lubrication accessories

Grease fitting

Fig. 11 Grease fitting and tube fitting

	Ta	able 11	Unit: mm
Model No.	Dust-proof	Grease fitting	Tube fitting
	specification	Thread body length L	Thread body length L
	Standard	5	-
NS15	With NSK K1	10	-
10315	Double seal	*	-
	Protector	*	-
	Standard	5	-
NS20	With NSK K1	10	-
11320	Double seal	8	-
	Protector	8	-
	Standard	5	6
NS25	With NSK K1	12	11
11325	Double seal	10	9
	Protector	10	9
	Standard	5	6
NS30	With NSK K1	14	13
11330	Double seal	12	11
	Protector	12	11
	Standard	5	6
NS35	With NSK K1	14	13
10000	Double seal	12	11

Protector 12 11
*) A connector is required for this model. Please contact
NSK for grease fittings.

8. Dust-proof components

(1) Standard specification

The NS Series can be readily used as they have a dust protection means for normal conditions. As the standard equipment, the ball slides have an end seal on both ends, and bottom seals at the bottom.

End seal	
	Bottom seal

Fig. 13	8
---------	---

Table 12	Seal friction	per ball	slide	(maximum valu	Ie)
				L Init [.]	N

					01111.11
Series Size	15	20	25	30	35
NS	8	9	9	9	10

(2) NSK K1[™] lubrication unit

Table 13 shows the dimension of linear guides equipped with the NSK K1 lubrication unit.

	Table 13						Unit: mm
Model No.	Ball slide length	Ball slide model	Standard ball slide length	Ball slide length installed with two NSK K1 L	Per NSK K1 thickness V1	Protective cover thickness V ₂	Protruding area of the grease fitting N
NS15	Standard	AL, EM	56.8	66.4	4.0	0.8	(E)
11212	Short	CL, JM	40.4	50		0.8	(5)
NS20	Standard	AL, EM	65.2	75.8	4.5	0.8	(1.4)
N320	Short	CL, JM	47.2	57.8	4.5	0.8	(14)
NS25	Standard	AL, EM	81.6	92.2	4 5	0.0	(1.4)
11525	Short	CL, JM	59.6	70.2	4.5	0.8	(14)
NS30	Standard	AL, EM	96.4	108.4	FO	1.0	(1.4)
11230	Short	CL, JM	67.4	79.4	5.0	1.0	(14)
NCOF	Standard	AL, EM	108	121		1.0	(1.4)
NS35	Short	CL, JM	77	90	5.5	1.0	(14)

Note: Ball slide length equipped with NSK K1 = (Standard ball slide length) + (Thickness of NSK K1, $V_1 \times$ Number of NSK K1) + (Thickness of the protective cover, $V_2 \times 2$)

NSK

(3) Double seal

Use a double seal set as showing in **Table 14**, when installing an extra seal to completed standard products. (**Fig. 14**)

When installing a grease fitting after the installation of double seals, a connector as showing **Fig.14** is required.

(4) Protector

Use a protector set as showing **Table 15**, when installing a protector to completed standard products. (**Fig.15**)

When installing a grease fitting after the installation of protectors, a connector as showing **Fig.15** is required.

Fig. 14 Double seal

Fig. 15 Protector

Table 14 Double-seal set

Model No.	Referer	Increased thickness V ₃	
	Without connector	With connector	(mm)
NS15	LS15WS-01	*	2.8
NS20	LS20WS-01	LS20WSC-01	2.5
NS25	LS25WS-01	LS25WSC-01	2.8
NS30	LS30WS-01	LS30WSC-01	3.6
NS35	LS35WS-01	LS35WSC-01	3.6

Table	15	Protector set	

Model No.	Refere	Increased thickness V4	
	Without connector	With connector	(mm)
NS15	LS15PT-01	*	3
NS20	LS20PT-01	LS20PTC-01	2.7
NS25	LS25PT-01	LS25PTC-01	3.2
NS30	LS30PT-01	LS30PTC-01	4.2
NS35	LS35PT-01	LS35PTC-01	4.2

*) For installation of a connector to a drive-in type grease fitting, contact NSK.

Fig. 16

(5) Cap to plug the rail mounting bolt hole

Table 16 Caps to plug rail bolt hole

Model No.	Bolt to	Сар	Quantity
model ne.	secure rail	reference No.	/case
NS15	M3	LG-CAP/M3	20
NS15	M4	LG-CAP/M4	20
NS20	M5	LG-CAP/M5	20
NS25, NS30	M6	LG-CAP/M6	20
NS35	M8	LG-CAP/M8	20

(6) Inner seal

Inner seal is only available for the models shown below.

	Table 17	NS Series
Series	Model No.	~
NS	NS20, NS25, NS30, NS35	

(7) Bellows

- A bellows fastener kit, which includes one of bellows faster, two of M_1 set screws, two of M_2 set screws, and two collars for M_2 set screws as showing Fig. 7.7 on page A55, is supplied with bellows for the ends.
- Middle bellows are supplied with four set screws and four collars.
- Use a bellows fastener kit as showing **Table 18**, when installing bellows to completed standard products.
- When NSK K1, double seals or protectors are used, the set screws of bellows fastener kit are unable to use.

Please contact NSK for details.

 Bellows fastener is available only for the horizontal mounting positions. For other mounting positions, sliding plate is required (see Fig. 7.10 on page A56).

For fixing to the rail, make tap holes to the rail end surface. Fix the bellows mounting plate to the rail end surface through these tap holes by using a machine screw. NSK processes a tap hole to the rail end face when ordered with a linear guide.

Table 18 Bellows fastner kit reference No.

Model No.	Kit reference No.
NS15	LS15FS-01
NS20	LS20FS-01
NS25	LS25FS-01
NS30	LS30FS-01
NS35	LS35FS-01

Fig. 17 Dimensions of bellows

	Table 19 Dimensions of bellows											
Model No.	H h, E W P a b BL minimum length M, Tap x depth											
JAS15L	23.5	18.9	4.6	43	10	8	16.5	17	M3 × 5	M3 × 14		
JAS20L	27	21	6	48	10	13	19.7	17	$M3 \times 5$	M2.5 × 14		
JAS25L	32	25	7	51	10	15	23.2	17	$M3 \times 5$	M3 × 18		
JAS30L	41	32	9	66	15	16	29	17	$M4 \times 6$	M4 × 19		
JAS35L	47	36.5	10.5	72	15	22	33.5	17	$M4 \times 6$	M4 × 22		

	Та	able 20	Numbe	ers of fo	ds (BL)	and len	gths of I	bellows		U	nit: mm
Model No.	Number of BL	2	4	6	8	10	12	14	16	18	20
Woder No.	Lmin	34	68	102	136	170	204	238	272	306	340
JAS15L	Stroke	106	212	318	424	530	636	742	848	954	1 060
JASTSL	Lmax	140	280	420	560	700	840	980	1 120	1 260	1 400
JAS20L	Stroke	106	212	318	424	530	636	742	848	954	1 060
JASZUL	Lmax	140	280	420	560	700	840	980	1 120	1 260	1 400
JAS25L	Stroke	106	212	318	424	530	636	742	848	954	1 060
JA525L	Lmax	140	280	420	560	700	840	980	1 120	1 260	1 400
14 5 2 0 1	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
JAS30L	Lmax	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
JAS35L	Lmax	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100

Note: The values of an odd number BL quantity (3, 5, 7, ...) can be obtained by adding two values of even number BL on the both side, then by dividing the sum by 2.

NSK

9. Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

(2) Reference number for random-matching type

The reference number coding for the assembly of random-matching type is the same as that of the preloaded assembly. However, only preload codes of "fine clearance T" and "slight preload Z" are available (refer to page A160).

Table 21 Material/surface treatment code

Code	Description
С	Special high carbon steel (NSK standard)
К	Stainless steel
D	Special high carbon steel with surface treatment
Н	Stainless steel with surface treatment
Ζ	Other, special

Note: High-precision grade and medium preload of random-matching type are not available in stainless steel.

Accuracy	Standard (Without NSK K1)	With NSK K1	With NSK K1 for food and medical equipment
Ultra precision grade	P3	K3	F3
Super precision grade	P4	K4	F4
High precision grade	P5	K5	F5
Precision grade	P6	K6	F6
Normal grade	PN	KN	FN
High precision grade (random-matching type)	PH	КН	FH
Normal grade (random-matching type)	PC	KC	FC

Table 22 Accuracy code

Note: Refer to pages A38 and A61 for NSK K1 lubrication unit.

10. Dimensions NS-CL (Medium-load type / Short) NS-AL (High-load type / Standard)

W

Side view of CL type

	A	ssemb	ly					Ball slie	de							
Model No.	Height			Width	/idth Length Mounting hole							Grease	fittin	g	Width	Height
WOULEI NO.																
	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	K	Т	Hole size	T_1	Ν	W_1	H_1
NS15CL NS15AL	24	4.6	9.5	34	40.4 56.8	26	 26	M4×0.7×6	23.6 40	19.4	10	\$ 3	6	3	15	12.5
NS20CL NS20AL	28	6	11	42	47.2 65.2	32		M5×0.8×7	30 48	22	12	M6×0.75	5.5	11	20	15.5
NS25CL NS25AL	33	7	12.5	48	59.6 81.6	35	— 35	M6×1×9	38 60	26	12	M6×0.75	7	11	23	18
NS30CL NS30AL	42	9	16	60	67.4 96.4	40		M8×1.25×12	42 71	33	13	M6×0.75	8	11	28	23
NS35CL NS35AL	48	10.5	18	70	77 108	50	 50	M8×1.25×12	49 80	37.5	14	M6×0.75	8.5	11	34	27.5

Notes: 1) External appearance of stainless steel ball slides differs from those of carbon steel ball slides.

Reference number for ball slide of random-matching type

Reference number for rail of random-matching type

Unit: mm

												011	i.e. iiiiiiii
Rai	l					Basi	ic load ra	ating				We	ight
Pitch	Mounting	G	Max. length	²⁾ Dyn	amic	Static		Static moment (N·m)					Rail
	bolt hole		L _{Omax} .	[50km]	[100km]	С о	MRO	M	PO	M	YO	slide	
F	$d \times D \times h$	(reference)	() for stainless	$C_{50}(N)$	$C_{100}(N)$	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
60	*3.5×6×4.5 4.5×7.5×5.3	20	2 920 (1 700)	7 250 11 200	5 750 8 850	9 100 16 900	45.5 84.5	24.5 77	196 470	20.5 64.5	165 395	0.14 0.20	1.4
60	6×9.5×8.5	20	3 960 (3 500)	10 600 15 600	8 400 12 400	13 400 23 500	91.5 160	46.5 133	330 755	39 111	279 630	0.19 0.28	2.3
60	7×11×9	20	3 960 (3 500)	17 700 26 100	14 000 20 700	20 800 36 500	164 286	91 258	655 1 470	76 217	550 1 230	0.34 0.51	3.1
80	7×11×9	20	4 000 (3 500)	24 700 38 000	19 600 30 000	29 600 55 000	282 520	139 435	1 080 2 650	116 365	905 2 220	0.58 0.85	4.8
80	9×14×12	20	4 000 (3 500)	34 500 52 500	27 300 42 000	40 000 74 500	465 865	220 695	1 670 4 000	185 580	1 400 3 350	0.86 1.3	7.0

2) The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

 $C_{_{100}}$ the basic dynamic load rating for 50 km rated fatigue life $C_{_{100}}$; the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.

3) High-precision grade and medium preload of random-matching type are available for special high carbon steel products.

* Standard mounting hole of NS15 rail is for M3 bolts (Hole size: $3.5 \times 6 \times 4.5$).

If you require mounting hole for M4 bolts (Hole size: $4.5 \times 7.5 \times 5.3$), please specify when ordering.

NS-JM (Medium-load type / Short) NS-EM (High-load type / Standard)

4-M × ℓ (ϕ Q₂ pilot drill) (G)

Side view of JM type

	As	ssemb	ly					Ва	ll slio	de							
Model No.	Height			Width	Width Length Mounting hole								Grease	fittin	g	Width	Height
	Н	E	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	<i>Q</i> ₂	L ₁	к	Т	Hole size	<i>T</i> ₁	N	W_1	H_1
NS15JM NS15EM		4.6	18.5	52	40.4 56.8	41	 26	M5×0.8×7	4.4	23.6 40	19.4	8	ø 3	6	3	15	12.5
NS20JM NS20EM		6	19.5	59	47.2 65.2	49	 32	M6×1×9 (M6×1×9.5)	5.3	30 48	22	10	M6×0.75	5.5	11	20	15.5
NS25JM NS25EM		7	25	73	59.6 81.6	60	 35	M8×1.25×10 (M8×1.25×11.5)	6.8	38 60	26	11 (12)	M6×0.75	7	11	23	18
NS30JM NS30EM		9	31	90	67.4 96.4	72		M10×1.5×12 (M10×1.5×14.5)	8.6	42	22	11 (15)	M6×0.75	8	11	28	23
NS35JM NS35EM		10.5	33	100	77 108	82		M10×1.5×13 (M10×1.5×14.5)	8.6	49 80	37.5	12 (15)	M6×0.75	8.5	11	34	27.5

Notes: 1) External appearance of stainless steel ball slides differs from those of carbon steel ball slides 2) Parenthesized dimensions are for items made of stainless steel

Reference number for ball slide of random-matching type

Reference number for rail of random-matching type

 L_0

Unit[,] mm

												UII	it. iiiiii	
Rail					Basic load rating									
Pitch		G	Max.	³⁾ Dyn	amic	Static		Static moment (N·m)				Ball	Rail	
	bolt hole		length L _{omax} .	[50km]	[100km]	С о	M _{RO}	M	PO	М	YO	slide		
F	$d \times D \times h$	(reference)	() for stainless	$C_{50}(N)$	$C_{100}(N)$	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)	
60	* 3.5×6×4.5 4.5×7.5×5.3	20	2 920 (1 700)	7 250 11 200	5 750 8 850	9 100 16 900	45.5 84.5	24.5 77	196 470	20.5 64.5	165 395	0.17 0.26	1.4	
60	6×9.5×8.5	20	3 960 (3 500)	10 600 15 600	8 400 12 400	13 400 23 500	91.5 160	46.5 133	330 755	39 111	279 630	0.24 0.35	2.3	
60	7×11×9	20	3 960 (3 500)	17 700 26 100	14 000 20 700	20 800 36 500	164 286	91 258	655 1 470	76 217	550 1 230	0.44 0.66	3.1	
80	7×11×9	20	4 000 (3 500)	24 700 38 000	19 600 30 000	29 600 55 000	282 520	139 435	1 080 2 650	116 365	905 2 220	0.76 1.2	4.8	
80	9×14×12	20	4 000 (3 500)	34 500 52 500	27 300 42 000	40 000 74 500	465 865	220 695	1 670 4 000	185 580	1 400 3 350	1.2 1.7	7	

3) The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

w.

 $C_{\rm sor}$ the basic dynamic load rating for 50 km rated fatigue life $C_{\rm sor}$ the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.

4) High-precision grade and medium preload of random-matching type are available for special high carbon steel products.

* Standard mounting hole of NS15 rail is for M3 bolts (Hole size: 3.5 × 6 × 4.5). If you require mounting hole for M4 bolts (Hole size: $4.5 \times 7.5 \times 5.3$), please specify when ordering.

A-5-1.5 LW Series

1. Features (1) Ideal for use of single rail

Thanks to the wide rail, rigidity and load carrying capacity are high against moment load from rolling direction. This makes the LW Series ideal for a single rail, compact linear guideway system.

(2) High load carrying capacity to vertical direction

The contact angle is set at 50 degrees, increasing load carrying capacity as well as rigidity in vertical direction.

(3) High resistance against impact load

Same as the NH and NS series, the offset Gothic arch grooves support a large load, such as an impact, by four rows.

Fig. 1 Balls in contact

(4) High accuracy

Fixing master rollers to ball grooves is easy thanks to the Gothic arch groove. This makes easy and accurate measuring of ball grooves. (5) Easy to handle, and designed with

safety in mind.

Balls are retained in the retainer and do not fall out when a ball slide is withdrawn from the rail.

(6) Fast delivery

Lineup of random-matching rails and ball slides supports and facilitates fast delivery.

3. Accuracy and preload

(1) Running parallelism of ball slide

	Table 1											
	Preloaded	assembly (not random	matching)	Random-matching type	LW Series							
Rail length (mm) over or less	High precision P5	Precision grade P6	Normal grade PN	Normal grade PC	Selles							
- 50	2	4.5	6	6								
50 - 80	3	5	6	6								
80 - 125	3.5	5.5	6.5	6.5								
125 – 200	4	6	7	7								
200 - 250	5	7	8	8								
250 – 315	5	8	9	9								
315 - 400	6	9	11	11								
400 - 500	6	10	12	12								
500 - 630	7	12	14	14								
630 - 800	8	14	16	16								
800 – 1 000	9	16	18	18								
1 000 – 1 250	10	17	20	20								
1 250 – 1 600	11	19	23	23								
1 600 – 2 000	13	21	26	26								
2 000 – 2 500	15	22	29	29								
2 500 – 3 150	17	25	32									
3 150 – 4 000	23	30	34	34								

(2) Accuracy standard

The preloaded assembly has three accuracy grades; High precision P5, Precision P6, and Normal PN grades, while the random-matching type has Normal PC grade only.

Tolerance of preloaded assembly type

Ta	Unit: µm		
Accuracy grade Characteristics	High precision P5	Precision grade P6	Normal grade PN
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±20 7	±40 15	±80 25
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±25 10	±50 20	±100 30
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	Shown in Table 1 and Fig. 2		

Tolerance of random-matching type: Normal grade PC

Т	able 3 Unit: µm
Model No. Characteristics	LW17, 21, 27, 35, 50
Mounting height H	±20
Variation of mounting height H	15①
	30②
Mounting width W_2 or W_3	±30
Variation of mounting width W_2 or W_3	25
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	See Table 1 and Fig. 2

Note: 1 Variation on the same rail

2 Variation on multiple rails

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

(3) Combination of accuracy and preload

Table 4						
		Accuracy grade				
		High precision	Precision grade	Normal grade	Normal grade	
Wi	thout NSK K1 lubrication unit	P5	P6	PN	PC	
Wi	th NSK K1 lubrication unit	K5	K6	KN	KC	
With NSK K1 for food and medical equipment		F5	F6	FN	FC	
	Fine clearance Z0 Slight preload Z1	0	0	0	_	
_		0	0	0	_	
Preload	Medium preload Z3	0	0	_	_	
₽ R	Random-matching type with fine clearance ZT	_	_	_	0	
	Random-matching type with slight preload ZZ		_	_	0	

Note: Z3 medium preload is only applicable to models of LW35 and LW50.

(4) Assembled accuracy

(5) Preload and rigidity

We offer five levels of preload: Slight preload Z1, Medium preload Z3 and Fine clearance Z0, along with Random-matching type of Fine clearance ZT and Slight preload ZZ. Rigidities are for the median of the preload range.

· Preload and rigidity of preloaded assembly

Table 5							
	Preload (N)		Rigidity (N/µm)				
Model No.			Vertical of	Vertical direction		direction	
Woder NO.	Slight preload	Medium preload	Slight preload	Medium preload	Slight preload	Medium preload	
	Z1	Z3	Z1	Z3	Z1	Z3	
LW17 EL	0 – 245	-	156	-	112	-	
LW21 EL	0 – 294	-	181	-	130	-	
LW27 EL	0 - 390	-	226	-	167	-	
LW35 EL	0 - 490	785	295	440	213	315	
LW50 EL	0 – 590	1 470	345	600	246	425	

Note: Clearance for Fine clearance Z0 is 0 to 3µm. Therefore, preload is zero. However, Z0 of PN grade is 0 to 15µm.

· Clearance and preload of random-matching type

	Table 6	Unit: µm
	Fine clearance	Slight preload
Model No.	ZT	ZZ
LW17	-3 - 15	-3.5 - 0
LW21	-3 - 15	-3.5 - 0
LW27	-4 - 15	-4 -0
LW35	-5 - 15	-5 -0
LW50	-5 - 15	-7 -0

Note: Minus sign denotes elastic deformation of balls representing.

5. Installation

(1) Permissible values of mounting error

Fig. 3

4. Maximum rail length

vary by accuracy grade.

Materia

Please consult NSK.

Series

LW

· Table 7 shows the limitations of rail length (maximum length). However, the limitations

> 17 21

Note: Rails can be butted if user requirement

exceeds the rail length shown in the table.

Special high a carbon steel 1 000 1 600 2 000 2 000 2 000

Size

Table 8						
Value	Preload			Model No.		
value	Fleidau	LW17	LW21	LW27	LW35	LW50
Permissible values of	Z0, ZT	20	20	25	38	50
parallelism in two rails e ₁	Z1, ZZ	9 9 13 23 3				
Permissible values of	ZO, ZT	100 µm/500 mm				
parallelism (height) in two rails e_2	Z1, ZZ			45 µm/500 mm	1	

(2) Shoulder height of the mounting surface and corner radius r

			Unit: mm	
Model No.	Corner radiu	s (maximum)	Shoulde	r height
would no.	ľ,	Γ _b	H'	H"
LW17	0.3	0.3	2.2	4
LW21	0.3	0.3	2.5	5
LW27	0.5	0.5	3.5	5
LW35	0.5	0.8	3.5	5
LW50	0.8	0.8	4	6

Fig. 6 Shoulder for the ball rail datum surface slide datum surface

NSK

Fig. 4

		Table 9		Unit: ı	
l No.	Corner radiu	s (maximum)	Shoulder heigh		
I INO.	ľ,	ľ	H'	H	
17	0.3	0.3	2.2	4	
21	0.3	0.3	2.5	5	
27	0.5	0.5	3.5	5	

6. Lubrication components

Refer to pages A38 and D13 for the lubrication of linear guides.

(1) Types of lubrication accessories

Fig. 7 and Table 10 show grease fittings and tube fittings.

We provide lubrication accessories with extended thread body length (L) for the addition of dust-proof accessories such as NSK K1 lubrication unit, double seal and protector.

We provide a suitable lubrication accessory for the special requirement on dust-proof accessories.

Consult NSK for a lubrication accessory with extended length of thread body for your convenience of replenishing lubricant.

Please ask NSK for stainless lubrication accessories.

Table 10 Unit: mm							
Model No.	Dust-proof	Grease fitting	Tube fitting				
	specification	Thread body length L	Thread body length L				
	Standard	5	-				
LW17	With NSK K1	10	-				
LVV I /	Double seal	*	-				
	Protector	*	-				
	Standard	5	-				
I W21	With NSK K1	12	-				
	Double seal	10	-				
	Protector	10	-				
	Standard	5	5				
I W27	With NSK K1	12	12				
LVVZ/	Double seal	10	9				
	Protector	10	9				
	Standard	5	6				
LW35	With NSK K1	14	13				
LVV35	Double seal	10	9				
	Protector	10	9				
	Standard	8	17				
LW50	With NSK K1	18	19				
LVV50	Double seal	14	17				
	Protector	14	17				

*) A connector is required for the grease fitting. Please contact NSK.

Fig. 7 Grease fitting and tube fitting

(2) Mounting position of lubrication accessories

The standard position of grease fittings is the end face of ball slide. We may mount them on a side of end cap for LW27, 35, and 50 as an option. (**Fig. 8**)

Please consult NSK for installation of grease or tube fittings to the ball slide body or side of end cap.

When using a piping unit with thread of M6 \times 1, you require a connector for a connection to a grease fitting mounting hole with M6 \times 0.75. The connector is available from NSK.

NSK

Fig. 8 Mounting position of lubrication accessories

7. Dust-proof components

(1) Standard Specification

The LW Series can be readily used as they have a dust protection means for normal conditions. As the standard equipment, the series has an end seal on both ends and bottom seals at the bottom.

Fig. 9

Table 11 Seal friction per ball slide (maximum value) $U_{nit: N}$

Series	17	21	27	35	50
LW	6	8	12	16	20

(2) NSK K1[™] lubrication unit

Table 12 shows the dimension of linear guides equipped with the NSK K1 lubrication unit.

Table 12							
Model No.	Ball slide length	Ball slide model	Standard ball slide length	Ball slide length installed with two NSK K1 L	Per NSK K1 thickness V1	Protective cover thickness V ₂	Protruding area of the grease fitting N
LW17	Standard	EL	51.4	61.6	4.5	0.6	(5)
LW21	Standard	EL	58.8	71.4	5.5	0.8	(13)
LW27	Standard	EL	74	86.6	5.5	0.8	(13)
LW35	Standard	EL	108	123	6.5	1.0	(13)
LW50	Standard	EL	140.6	155.6	6.5	1.0	(14)

Note: 1) NSK K1 for food and medical equipments are available for the models of LW17 to LW35.
2) Ball slide length equipped with NSK K1 = (Standard ball slide length) + (Thickness of NSK K1, V₁ x Number of NSK K1) + (Thickness of the protective cover, V₂ x 2)

(3) Double seal

Use a double seal set as showing in **Table 13**, when installing an extra seal to completed standard products. (**Fig. 10**)

When installing a grease fitting after the installation of double seals, a connector as showing **Fig.10** is required.

(4) Protector

Use a protector set as showing **Table 14**, when installing a protector to completed standard products. (**Fig.11**)

When installing a grease fitting after the installation of protectors, a connector as showing **Fig.11** is required.

Fig. 10 Double seal

Table 13 Double-seal set

Model No.	Referer Without connector	Increased thickness V₃ (mm)	
LW17	LW17WS-01	*	2.6
LW21	LW21WS-01	LW21WSC-01	2.8
LW27	LW27WS-01	LW27WSC-01	2.5
LW35	LW35WS-01	LW35WSC-01	3
LW50	LW50WS-01	LW50WSC-01	3.6

*) For installation of a connector to a drive-in type grease fitting, contact NSK.

Fig. 11 Protector seal

Table 14 Protector set

Model No.	Referer Without connector	Increased thickness V ₄ (mm)	
LW17	LW17PT-01	*	3.2
LW21	LW21PT-01	LW21PTC-01	3.2
LW27	LW27PT-01	LW27PTC-01	2.9
LW35	LW35PT-01	LW35PTC-01	3.6
LW50	LW50PT-01	LW50PTC-01	4.2

*) For installation of a connector to a drive-in type grease fitting, contact NSK.

(5) Cap to plug the rail mounting bolt hole Table 15 Caps to plug rail bolt hole

Model No.	Bolt to	Сар	Quantity
Woder No.	secure rail	reference No.	/case
LW17, LW21, LW27	M4	LG-CAP/M4	20
LW35	M6	LG-CAP/M6	20
LW50	M8	LG-CAP/M8	20

(6) Bellows

 \cdot Make tap holes to the rail end face to fix the bellows mounting plate. NSK processes tap holes to the rail end face when ordered with a linear guide.

Dimension tables of bellows LW series

	Table 16 Dimensions of bellows Unit: mm												
Model No.	Н	h ₁	E	W	Ρ	а	b	BL minimum length	Tap (<i>M</i>) × depth				
JAW17N	25.5	23	2.5	68	15	22	6	17	M3 × 6				
JAW21N	29	26	3	75	17	26	7	17	$M3 \times 6$				
JAW27N	37	33	4	85	20	28	10	17	M3 × 6				
JAW35L	34	30	4	100	14	48	12	17	M4×8				
JAW35N	41	37	4	115	20	40	12	17	1014 × 0				
JAW50L	46.5	42	4.5 135		20	70	14	17	M4×8				
JAW50N	56.5	52	4.5	160	30	70	14	17	1V14 × O				

Table 17 Numbers of folds (BL) and length of bellows

Unit: mm

Model No.	Number of BL	2	4	6	8	10	12	14	16	18	20
woder no.	Lmin	34	68	102	136	170	204	238	272	306	340
JAW17N	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
JAVVIIIN	Lmax	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
JAW21N	Stroke	204	408	612	816	1 020	1 2 2 4	1 428	1 632	1 836	2 040
JAVVZIIN	Lmax	238	476	714	952	1 190	1 428	1 666	1 904	2 1 4 2	2 380
JAW27N	Stroke	246	492	738	984	1 230	1 476	1 722	1 968	2 2 1 4	2 460
JAVVZ/IN	Lmax	280	560	840	1 120	1 400	1 680	1 960	2 2 4 0	2 520	2 800
JAW35L	Stroke	162	324	486	648	810	972	1 1 3 4	1 296	1 458	1 620
JAVVSSL	Lmax	196	392	588	784	980	1 1 7 6	1 372	1 568	1 764	1 960
JAW35N	Stroke	218	436	654	872	1 090	1 308	1 526	1 744	1 962	2 180
JAVVSSIN	Lmax	252	504	756	1 008	1 260	1 512	1 764	2 0 1 6	2 268	2 520
JAW50L	Stroke	246	492	738	984	1 230	1 476	1 722	1 968	2 2 1 4	2 460
JAVVOUL	Lmax	280	560	840	1 120	1 400	1 680	1 960	2 2 4 0	2 520	2 800
JAW50N	Stroke	386	772	1 158	1 544	1 930	2 3 1 6	2 702	3 088	3 474	3 860
JAVV5UN	Lmax	420	840	1 260	1 680	2 100	2 520	2 940	3 360	3 780	4 200

Note: The values of an odd number BL quantity (3, 5, 7, ...) can be obtained by adding two values of even number BL on the both sides, then by dividing the sum by 2.

LW Series

8. Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

Table 18 Material/surface treatment code

Code	Description
С	Special high carbon steel (NSK standard)
D	Special high carbon steel with surface treatment
Z	Other, special

Table 19	Accuracy	code
----------	----------	------

Accuracy	Standard (Without NSK K1)	With NSK K1	With NSK K1 for food and medical equipment
High precision grade	P5	K5	F5
Precision grade	P6	K6	F6
Normal grade	PN	KN	FN
Normal grade (random-matching type)	PC	KC	FC

Note: Refer to pages A38 and A61 for NSK K1 lubrication unit.

(2) Reference number for random-matching type

The reference number coding for the assembly of random-matching type is the same as that of preloaded assembly. However, only preload codes of "fine clearance T" and "slight preload Z" are available (refer to page A177).

LW-EL

Front view

Side view

Reference number for ball slide of random-matching type

Option code -K: Equipped with NSK K1 -F: Fluoride low temperature chrome plating + AS2 grease -F50: Fluoride low temperature chrome plating + LG2 grease Preload code

No code: Fine clearance, 7: Slight preload

LW Series

NSK

Reference number for rail of random-matching type

*Please consult with NSK for butting rail specification

Unit: mm

													011	ic. 111111
F	Rail					Basic load rating								
	Pitch		G	Max. length	1) Dy	¹⁾ Dynamic		Static moment (N·m)					Ball	Rail
		bolt hole		L _{omax} .	[50km]	[100km]	С о	MRO	0 <i>M</i> PO		M _{YO}		slide	
B_2	F	$d \times D \times h$	(reference)	() for stainless	$C_{50}(N)$	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
18	40	4.5×7.5×5.3	15	1 000	5 600	4 450	11 300	135	44	288	37	242	0.2	2.1
22	50	4.5×7.5×5.3	15	1 600	6 450	5 150	13 900	185	65.5	400	55	335	0.3	2.9
24	60	4.5×7.5×5.3	20	2 000	12 800	10 200	26 900	400	171	970	143	815	0.5	4.7
40	80	7×11×9	20	2 000	33 000	26 400	66 500	1 690	645	3 550	545	2 990	1.5	9.6
60	80	9×14×12	20	2 000	61 500	48 500	117 000	3 900	1 530	8 200	1 280	6 900	4.0	15.8

Note: The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

C_{so}, the basic dynamic load rating for 50 km rated fatigue life C_{so}, the basic dynamic load rating for 100 km rated fatigue life

		As	sseml	oly		Ball slide													
	Model No.	Height			Width	Length		Mounting hole							Grease	fittin	g	Width	Height
	NOUEI NO.																		
		Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	l_2	Q	L ₁	K	Т	Hole size	<i>T</i> ₁	Ν	W_1	H_1
1	LW17EL	17	2.5	13.5	60	51.4	53	26	M4×0.7×6	3.2	3.3	35	14.5	6	φ 3	4	3	33	8.7
	LW21EL	21	3	15.5	68	58.8	60	29	M5×0.8×8	3.7	4.4	41	18	8	M6×0.75	4.5	11	37	10.5
	LW27EL	27	4	19	80	74	70	40	M6×1×10	6	5.3	56	23	10	M6×0.75	6	11	42	15
	LW35EL	35	4	25.5	120	108	107	60	M8×1.25×14	9	6.8	84	31	14	M6×0.75	8	11	69	19
ĺ	LW50EL	50	4.5	36	162	140.6	144	80	M10×1.5×18	14	8.6	108	45.5	18	Rc1/8	14	14	90	24

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

A187

1. PU Series	A191
2. LU Series	A201
3. PE Series	A213
4. LE Series	A223
5. Miniature LH	
Series	A237
6. LL Series	A247

A-5-2 Liquid Crystal Display and Semiconductor

A-5-2.1 PU Series (Miniature type)

1. Features (1) Motion performance

Newly designed recirculation component facilitates smooth circulation of steel balls.

(2) Lightweight

The ball slide is fabricated to be approximately 20% lighter than LU Series by the application of resin to a part of its body.

(3) Reduced noise intensity

Resin components applied in ball circulating circuits reduce collision noise between steel balls and the inner wall of circulating circuits.

(4) Low dust generation

The structure is designed to prevent dust generation.

(5) Excellent dust-proofing

It is designed to minimize the clearance between the side of rails and the inner walls of the slide, and prevent foreign matters from entering the ball slide.

(6) High corrosion resistance

High corrosion-resistant martensite stainless steel is incorporated as a standard feature to provides excellent corrosion resistance.

(7) Easy to handle

Safety design includes a retainer that prevents steel balls from dropping out of the ball slide even when the slide is removed from the rail.

(8) Long-term maintenance-free

Superb features of NSK K1 Lubrication unit realize a long-term, maintenance-free operation. (9) Fast delivery

Lineup of random-matching rails and ball slides facilitates fast delivery. (PU09 to PU15)

2. Ball slide shape

3. Accuracy and preload

(1) Running parallelism of ball slide Table 1

(1) 10	Table 1 Unit:												
		Preload	ed assembly type	e (not random ma	atching)	Random-matching type							
Rail lengt (mm) over or le		Super precision P4	High precision P5	Precision grade P6	Normal grade PN	Normal grade PC							
_ !	50	2	2	4.5	6	6							
50 – 8	80	2	3	5	6	6							
80 – 12	25	2	3.5	5.5	6.5	6.5							
125 – 20	00	2	4	6	7	7							
200 - 2	50	2.5	5	7	8	8							
250 - 3	15	2.5	5	8	9	9							
315 – 40	00	3	6	9	11	11							
400 - 50	00	3	6	10	12	12							
500 - 63	30	3.5	7	12	14	14							
630 - 8	00	4.5	8	14	16	16							
800 – 1 0	00	5	9	16	18	18							
1 000 – 1 2	50	6	10	17	20	20							

PU Series

(2) Accuracy standard

The preloaded assembly has four accuracy grades; Super precision P4, High precision P5, Precision grade P6, and normal grade PN, while the random-matching type has Normal grade PC only.

Table 2 shows the accuracy standard for the preloaded assembly type while Table 3 shows the accuracy standard for the random-matching types.

Tolerance of preloaded assembly

	Table	2		Unit: µm
Accuracy grade Characteristics	Super precision P4	High precision P5	Precision grade P6	Normal grade PN
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 5	±15 7	±20 15	±40 25
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 7	±20 10	±30 20	±50 30
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	S	Shown in Table 1 a	nd Fig. 2	

Tolerance of random-matching type: Normal grade PC

Tabl	e 3 Unit: μm
Model No. Characteristics	PU09, 12 and 15
Mounting height H	±20
Variation of mounting height H	15① 30②
Mounting width W_2 or W_3	±20
Variation of mounting width W_2 or W_3	20
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	Shown in Table 1 and Fig. 2

Notes: ① Variation on the same rail ② Variation on multiple rails

(3) Assembled accuracy

Note: Please refer to page A67 for marks on the datum surfaces.

(4) Preload and rigidity

We offer three levels of preload: Slight preload Z1 and Fine clearance Z0 for preloaded assembly type, along with Fine clearance ZT for random-matching type. Values for preload and rigidity of the preloaded assembly type are shown in **Table 4**. Rigidities are for the median of the preload range. **PU Series**

· Preload and rigidity of preloaded assembly

		Table 4	
		Preload	Rigidity
	Model No.	(N)	(N/µm)
		Slight preload (Z1)	Slight preload (Z1)
ЭС	PU05TR	0 - 3	17
typ	PU07AR	0 - 8	22
ard	PU09TR	0 - 10	30
Standard type	PU12TR	0 – 17	33
St	PU15AL	0 - 33	45
ad	PU09UR	0 - 14	46
High-load type	PU12UR	0 – 25	52
Hig	PU15BL	0 - 51	75

Note: Clearance of Fine clearance Z0 is 0 to 3 µm. Therefore, preload is zero.

· Clearance of random-matching type

	Tab	le 5 Unit: μm
	Model No.	Fine clearance
	Model No.	ZT
ard	PU09TR	
ype	PU12TR	3 or less
Sta	PU15AL	
bad	PU09UR	
High-load Standard type type	PU12UR	5 or less
Hi	PU15BL	

4. Maximum rail length

Table 6 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grade.

Та	able 6 Length	limita	ation	s of ra	ails	
					Unit	: mm
Series	Size					
	Material	05	07	09	12	15
PU	Stainless steel	210	375	600	800	1 000

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

A193

5. Installation

(1) Permissible values of mounting error

		Та	ble 7			Unit: µm
Value	Dualaad			Model No.		
Value	Preload	PU05	PU07	PU09	PU12	PU15
Permissible values of	Z0, ZT	10	12	15	20	25
parallelism in two rails <i>e</i> 1	Z1	7	10	13	15	21
Permissible values of	Z0, ZT		1	50 µm/200 m	m	
parallelism (height) in two rails e_2	Z1		ç	90 µm/200 mr	n	

(2) Shoulder height of the mounting surface and corner radius r

	lab	le 8	Uı	nit: mm
Model No.	Corner radiu:	s (maximum)	Shoulde	er height
model no.	ra	r _b	H′	H″*
PU05	0.2	0.2	0.7	2.3
PU07	0.2	0.3	1.2	2.5
PU09	0.3	0.3	1.9	2.6
PU12	0.3	0.3	2.5	3.4
PU15	0.3	0.5	3.5	4.4

T-1-1- 0

*) H" is the minimum recommended value based on the dimension T in dimension table.

6. Lubrication accessory

Model of PU15 can select drive-in type grease fitting as an option.

For the models of PU05 to PU12, apply grease directly to the ball grooves of rail using a point nozzle.

7. Dust-proof components

(1) Standard specification

An end seal provided to both ends of a ball slide as a standard feature. Seal friction per standard ball slide is shown in **Table 9**.

Table 9 Seal friction per ball slide (maximum value)

Table 5 Sea	Inction			inum vai	Unit: N
Series Size	05	07	09	12	15
PU	0.3	0.3	0.5	0.5	0.5

(2) NSK K1[™] lubrication unit

Table 10 shows the dimension of linear guides equipped with the NSK K1 lubrication unit.

			Table 10			Unit: mm
Model No.	Ball slide length	Ball slide model	Standard ball slide length	Ball slide length equipped with two NSK K1 <i>L</i>	Thickness of NSK K1, V ₁	Thickness of protective cover, V ₂
PU05	Standard	TR	19.4	24.4	2	0.5
PU07	Standard	AR	23.4	29.4	2.5	0.5
PU09	Standard	TR	30	36.4	0.7	0.5
P009	Long	UR	41	47.4	2.7	0.5
PU12	Standard	TR	35	42	3	0.5
PUIZ	Long	UR	48.7	55.7	3	0.5
DUITE	Standard	AL	43	51.2	2.5	0.6
PU15	Long	BL	61	69.2	3.5	0.6

Note: Ball slide length equipped with NSK K1 =

(Standard ball slide length) + (Thickness of NSK K1, $V_{1} \times$ Number of NSK K1) + (Thickness of the protective cover $V_{2} \times 2)$

Drive-in type

PU Series

8. Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

(2) Reference number for random-matching type

Rail P1U15 0470 R K N -	** <u>PC T</u>
Random-matching rail series code	Preload code (See page A194.)
P1U: PU Series random-matching rail	T: Fine clearance
Size	Accuracy code: PC
Rail length (mm)	PC: Normal grade is only available. Design serial number
Rail shape code	Added to the reference number.
S: PU09, 12. R: PU15	*Butting rail specification
Material/surface treatment code (See Table 11.) *Pleas	N: Non-butting. L: Butting specification se consult with NSK for butting rail specification.

The reference number coding for the assembly of random-matching type is the same as that of preloaded assembly. However, only preload code of "fine clearance T" is available (refer to page A194).

Table 1	1 Material/surface treatment code
Code	Description
К	Stainless steel
Н	Stainless steel with surface treatment
Z	Other, special

Table 12 Accuracy code

Accuracy	Standard (Without NSK K1)	With NSK K1	With NSK K1 for food and medical equipment		
Super precision grade	P4	K4	F4		
High precision grade	P5	K5	F5		
Precision grade	P6	K6	F6		
Normal grade	PN	KN	FN		
Normal grade (random-matching type)	PC	КС	FC		

Note: Refer to pages A38 and A61 for the NSK K1 lubrication unit.

9. Dimensions

PU-TR, AR, AL (Standard type / Standard) PU-UR, BL (High-load type / Long)

Side view

Front view

PU15

(G)

PU07, 09, 12

(G)

PU15

	A	ssemb	ly		Ball slide											
Model No.	Height			Width	Length Mounting hole					Oil	hole		Width	Height		
Widdor No.	Н	Ε	W_{2}	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	К	Т	Hole size	<i>T</i> ₁	N	W_1	<i>H</i> ₁
PU05TR	6	1	3.5	12	19.4	8	—	M2×0.4×1.5	11.4	5	2.3	\$0.9 ¢	1.5	—	5	3.2
PU07AR	8	1.5	5	17	23.4	12	8	M2×0.4×2.4	13.3	6.5	2.45	\$ 1.5	1.8	—	7	4.7
PU09TR PU09UR	10	2.2	5.5	20	30 41	15	10 16	M3×0.5×3	19.6 30.6	7.8	2.6	_	—	—	9	5.5
PU12TR PU12UR	13	3	7.5	27	35 48.7	20	15 20	M3×0.5×3.5	20.4 34.1	10	3.4	_	_	_	12	7.5
PU15AL PU15BL	16	4	8.5	32	43 61	25	20 25	M3×0.5×5	26.2 44.2	12	4.4	ø 3	3.2	(3.6)	15	9.5

δd

Notes: 1) The ball slide of PU05TR has only two mounting tap holes in the center.

Reference number for ball slide of random-matching type

-K: Equipped with NSK K1 Material code S: Stainless stee

Reference number for rail of random-matching type

*Please consult with NSK for butting rail specification.

T: Fine clearance

												UI	nt. 111111
Rail					Basic load rating							We	eight
Pitch	Mounting bolt	G	Maximum	²⁾ Dyr	namic	Static		Static	momen	t (N∙m)		Ball	Rail
	hole		length	[50km]	[100km]	С о	MRO	M	PO	M	YO	slide	
F	$d \times D \times h$	(reference)	Lomax	$C_{50}(N)$	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(g)	(g/100mm)
15	2.3×3.3×0.8	5	210	520	410	775	2.06	1.28	9.90	1.28	9.90	4	11
15	2.4×4.2×2.3	5	375	1 090	860	1 370	5.20	2.70	21.8	2.70	21.8	8	23
20	3.5×6×4.5	7.5	600	1 490	1 180	2 150	9.90	6.10	41.0	6.10	41.0	16	35
20	0.0/0/4.0	7.5	000	2 100	1 670	3 500	16.2	15.6	88.0	15.6	88.0	25	55
25	3.5×6×4.5	10	800	2 830	2 250	3 500	21.1	11.4	73.5	11.4	73.5	32	65
20	3.5X0X4.5	10	000	4 000	3 150	5 700	34.5	28.3	174	28.3	174	53	05
40	3.5×6×4.5	15	1 000	5 550	4 400	6 600	49.5	25.6	190	25.6	190	59	105
40	0.07074.0	13	1000	8 100	6 400	11 300	84.5	69.5	435	69.5	435	100	105

2) The basic load rating comply with the ISO standard, (ISO 14728-1, 14728-2)

 $C_{\rm sor}$ the basic dynamic load rating for 50 km rated fatigue life $C_{\rm sor}$ the basic dynamic load rating for 100 km rated fatigue life

3) To fix rail of PU05TR, use M2 x 0.4 cross-recessed pan head machine screw for precision instrument.

(JCIS 10-70 No. 0 pan head machine screw No.1.)

(JCIS: Japanese Camera Industrial Standard.)

NSK

I Init: mm

A-5-2.2 LU Series (Miniature type)

Fig. 1 LU Series

1. Features

(1) Super-small type

This compact guide owes its design to the single ball groove on both right and left sides (Gothic arch) .

(2) Equal load carrying capacity in vertical and lateral directions

The contact angle is set at 45 degrees, thus facilitating the equal load carrying capacity in vertical and lateral directions. This also provides equal rigidity in both directions.

(3) Stainless steel is also standardized

Items made of the martensitic stainless steel are available as standard.

(4) Some series have a ball retainer

Ball slide types AR and TR come with a ball retainer. Balls are retained in the retainer and do not fall out when the ball slide is withdrawn from the rail. (Ball slides of random-matching type as well as LU15 come with ball retainer.)

(5) Fast delivery

Random-matching of rails and ball slides are available. (LU09 to LU15)

Fig. 2 Balls are in contact.

2. Ball slide shape

3. Accuracy and preload

(1) Running parallelism of ball slide Table 1

Öhit. phi										
	Preload	Preloaded assembly type (not random matching)								
Rail length (mm) over or less	Super precision P4	High precision P5	Precision grade P6	Normal grade PN	Normal grade PC					
- 50	2	2	4.5	6	6					
50 - 80	2	3	5	6	6					
80 - 125	2	3.5	5.5	6.5	6.5					
125 – 200	2	4	6	7	7					
200 - 250	2.5	5	7	8	8					
250 - 315	2.5	5	8	9	9					
315 - 400	3	6	9	11	11					
400 - 500	3	6	10	12	12					
500 - 630	3.5	7	12	14	14					
630 - 800	4.5	8	14	16	16					
800 – 1000	5	9	16	18	18					
1000 – 1250	6	10	17	20	20					

NSK

Unit: um

LU Series

(2) Accuracy standard

The preloaded assembly type has four accuracy grades; Super precision P4, High precision P5, Precision P6, and Normal grade PN, while the random-matching type has Normal grade PC only.

Table 2 shows the accuracy standard for the preloaded assembly type, while Table 3 shows the accuracy standard for the random-matching type.

Tolerance of preloaded assembly

Table 2 Unit: µr								
Accuracy grade Characteristics	Super precision P4	High precision P5	Precision grade P6	Normal grade PN				
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 5	±15 7	±20 15	±40 25				
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 7	±20 10	±30 20	±50 30				
Running parallelism of surface C to surface A Running parallelism of surface D to surface B		Refer to Table 1 ar	nd Fig. 3					

Tolerance of random-matching type: Normal grade PC

Tabl	e 3 Unit: μm
Accuracy grade Characteristics	LU09, 12, 15
Mounting height H	±20
Variation of mounting height H	40
Mounting width W_2 or W_3	±20
Variation of mounting width W_2 or W_3	40
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	Refer to Table 1 and Fig. 3

(3) Assembled accuracy

Fig. 3

Note: Please refer to page A67 for marks on the datum surfaces.

NSK

(4) Preload and rigidity

We offer three levels of preload: Slight preload Z1 and Fine clearance Z0, along with randommatching type of Fine clearance ZT. Values for preload and rigidity of the preloaded assembly type are shown in **Table 4**. Rigidities are for the median of the preload range.

· Preload and rigidity of preloaded assembly

	Table 4		
		Preload	Rigidity
		(N)	(N/µm)
	Model No.	Slight preload	Slight preload
		(Z1)	(Z1)
	LU05 TL	0-3	15
oe	LU07 AL	0 - 8	22
typ	LU09 AL, TL	0 – 12	26
lard	LU09 AR, TR	0 - 10	30
Standard type	LU12 AL, TL	0 – 17	33
St	LU12 AR, TR	0 – 17	33
	LU15 AL	0 - 33	45
ad	LU09 BL, UL	0 – 17	43
High-load type	LU12 BL, UL	0 – 25	52
High	LU15 BL	0 – 51	75

Note: Clearance of Fine clearance Z0 is 0 to 3 μ m. Therefore, preload is zero. However, the clearance of the Z0 of PN grade is 3 to 10 μ m.

Clearance of random-matching type

Та	ble 5 Unit: μm
Model No.	Fine clearance ZT
LU09	
LU12	0 – 15
LU15	

4. Maximum rail length

Table 6 shows the limitations of rail length.However, the limitations vary by accuracy grades.

Table 6 Length limitation of rails									
Unit: mm									
Series	Size								
Series	Material	05	07	09	12	15			
LU	Special high carbon steel	-	-	1 200	1 800	2 000			
	Stainless steel	210	375	600	800	1 000			

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

	Table 7								
Value	Dualaad			Model No.					
value	Preload	LU05	LU07	LU09	LU12	LU15			
Permissible values of	Z0, ZT	10	12	15	20	25			
parallelism in two rails e1	Z1	7	10	13	15	21			
Permissible values of	Z0, ZT	150 μm/200 mm							
parallelism (height) in two rails e_2	Z1	90 µm/200 mm							

(2) Shoulder height of the mounting surface and corner radius r

Table 8 Unit: mm								
Model No.	Corner radius	s (maximum)	Shoulde	er height				
would no.	ľ _a	ľ,	H'	Н"				
LU05	0.2	0.2	0.7	2				
LU07	0.2	0.3	1.2	3				
LU09	0.3	0.3	1.9	3				
LU12	0.3	0.3	2.5	4				
LU15	0.3	0.5	3.5	5				

NSK

6. Lubrication accessories

There is no standard grease fitting for LU05 to LU15.

For the LU Series, apply grease directly to the ball grooves of rail using a point nozzle.

7. Dust-proof components

(1) Standard specification

End seal: Provided to both ends of the ball slide as a standard feature. LU05TL, LU07AL, LU09AL, and LU09TL can install the side seal as an option. · Seal friction per standard ball slide is shown in Table 9.

Table 9 Seal friction per ball slide (maximum value)

					Unit: N
Series Size	05	07	09	12	15
LU	0.3	0.3	0.5	0.5	0.5

(2) NSK K1[™] lubrication unit

The installed dimensions of the NSK K1 lubrication unit are shown in Table 10.

	Table 10												
Model No.	Ball slide length	Ball slide model	Standard ball slide length	Ball slide length installed with two NSK K1 L	Per NSK K1 thickness V1	Protective cover thickness V ₂							
LU05	Standard	TL	18*	24.4	2.0	0.5							
LU07	Standard	AL	20.4*	29.4	2.5	0.5							
	Standard	dard AR, TR 30	30	36.4		0.5							
LU09	Standard	AL, TL	26.8*	34.2	2.7								
	Long	BL, UL	41	47.4									
	Standard	AR, TR	35.2	42.2									
LU12	Standard	AL, TL	34	41	3.0	0.5							
	Long	BL, UL	47.5	54.5									
LU15	Standard	AL	43.6	51.8	3.5	0.6							
LUIS	Long	BL	61	69.2	3.0	0.0							

*) Standard ball slide length of LU05TL, LU07AL, LU09AL and LU09TL does not include the thickness of the end seal (1.5 mm). However, it includes the height of the screw head for end cap installation (Included length – LU05, 0.8 mm; LU07, no projection; LU09, 1 mm)

Note: Ball slide length equipped with NSK K1 =

(Standard ball slide length) + (Thickness of NSK K1, V1 × Number of NSK K1) + (Thickness of the protective cover $V_2 \times 2$)

rail datum surface

Fig. 7 Shoulder for the ball slide datum surface

LU Series

LU Series

8. Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

(2) Reference number for random-matching type

Rail L1U 12 0270	<u>RKN-</u> *	** PC	<u>T</u>
Random-matching rail series code			Preload code (See page A204.)
L1U: LU Series random-matching rail			T: Fine clearance
Size			Accuracy code: PC
Rail length (mm)			PC: Normal grade is only available. Design serial number
Rail shape code			Added to the reference number.
L: Standard. R: LU09 and LU12 standard, equipped with ball ret	ainer.		*Butting rail specification
S: LU09 and LU12 with ball retainer and mounting holes for M3 T: LU09 and LU12 without ball retainer and mounting holes for I	//3		N: Non-butting. L: Butting specification
Material/surface treatment code (See Table 1	1.) *Please	consult with	NSK for butting rail specification.

The reference number coding for the assembly of random-matching type is the same as that of the preloaded assembly. However, only the preload code of "Fine clearance T" is available (refer to page A204).

Table 11 Material/surface treatment code										
Code Description										
Special high carbon steel (NSK standard)										
Stainless steel										
Special high carbon steel with surface treatment										
Stainless steel with surface treatment										
Other, special										

Table 12 Accuracy code

Accuracy	Standard (Without NSK K1)	With NSK K1			
Super precision grade	P4	K4			
High precision grade	P5	K5			
Precision grade	P6	K6			
Normal grade	PN	KN			
Normal grade (random-matching type)	PC	КС			

Note: Refer to page A38 for NSK K1 lubrication unit.

LU Series

LU Series

9. Dimensions

LU-AL (Standard type / Standard, LU15 is equipped with ball retainer) LU-TL (Standard type / Standard, Large mounting hole) LU-AR (Standard type / Standard, With ball retainer) LU-TR (Standard type / Standard, Large mounting hole, with ball retainer)

Model No.		Height			Width	Length		Mou	nting hole			Width	Height	Pitch
		Н	E	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	К	W_1	H_1	F
	LU05TL	6	1	3.5	12	18	8	— M2×0.4×1.5		12	5	5	3.2	15
	LU07AL	8	1.5	5	17	20.4	12	8	M2×0.4×2.4	13.6	6.5	7	4.7	15
ĺ	LU09AL LU09TL	10	2.2	5.5	20	26.8	15	13 10	M2×0.4×2.5 M3×0.5×3	18	7.8	9	5.5	20
	LU09AR LU09TR	10	2.2	5.5	20	30	15	13 10	M2×0.4×2.5 M3×0.5×3	20	7.8	9	5.5	20
	LU12AL LU12TL	13	3	7.5	27	34	20	15	M2.5×0.45×3 M3×0.5×3.5	21.8	10	12	7.5	25
	LU12AR LU12TR	13	3	7.5	27	35.2	20	15	M2.5×0.45×3 M3×0.5×3.5	21.8	10	12	7.5	25
	LU15AL	16	4	8.5	32	43.6	25	20	M3×0.5×4	27	12	15	9.5	40

Notes 1) LU05TL, LU07AL, LU09TL, LU09AR, LU09TR, LU12AR and LU12TR come in stainless steel only. 2) Ball slide of LU05TL has only two mounting tap holes in the center.

3) End seals of LU05TL, LU07AL, LU09AL and LU09TL are available on request.

Reference number for ball slide of random-matching type Random matching with retainer: LU09 - 12 are AR/TR, LU15 is AL.

LAU-AR (With ball retainer)

LAU-TR (Large mounting hole, with ball retainer) LAU-AL (LU15 is equipped with ball retainer)

Reference number for rail of random-matching type L1U12 0270 RKN -** PC T

Random-matching rail series code	
L1U: LU Series random-matching rail	
Size	
Rail length (mm)	
Rail shape code	
L: Standard. R:LU09 and LU12 standard equipped with ball retainer. S: LU09 and LU12 with ball retainer and mounting holes for M3 T: LU09 and LU12 without ball retainer and mounting holes for M3	
Material/surface treatment code (See Table 11.)	

Preload code (See page A204.)
T: Fine clearance
Accuracy code: PC
PC: Normal grade is only available.
Design serial number
Design senai number
Added to the reference number.
•

*Please consult with NSK for butting rail specification

Unit: mm

A210

												Jint. min	
Rail				Basic load rating								Weight	
Mounting bolt	G	Max.	5)Dyn	namic Static Static moment (N·m)					Ball	Rail			
hole		length L_{0max} .	[50km]	[100km]	С о	MRO	M	PO	M	YO	slide		
$d \times D \times h$	(reference)	() for stainless	C ₅₀ (N)	$C_{100}(N)$	(N)		One slide	Two slides	One slide	Two slides	(g)	(g/100 mm)	
2.3×3.3×1.5	5	 (210)	545	435	740	1.93	1.22	8.85	1.22	8.85	4	11	
2.4×4.2×2.3	5	— (375)	1 090	865	1 370	4.90	2.66	18.6	2.66	18.6	10	23	
2.6×4.5×3 3.5×6×4.5	7.5	1 200 (600)	1 760	1 400	2 220	10.2	6.10	38.5	6.10	38.5	17	35	
2.6×4.5×3 3.5×6×4.5	7.5	(600)	1 490	1 180	2 150	9.9	6.10	41.0	6.10	41.0	19	35	
3×5.5×3.5 3.5×6×4.5	10	1 800 (800)	2 830	2 250	3 500	21.1	11.4	78.5	11.4	78.5	38	65	
3×5.5×3.5 3.5×6×4.5	10	 (800)	2 830	2 250	3 500	21.1	11.4	81.5	11.4	81.5	38	65	
3.5×6×4.5	15	2 000 (1 000)	5 550	4 400	6 600	49.5	25.6	193	25.6	193	70	105	

4) To fix rail of LU05TL, use M2 × 0.4 cross-recessed pan head machine screw for precision instrument.

(JCIS 10-70 No. 0 pan head machine screw No.1.)

(JCIS: Japanese Camera Industrial Standard.)

5) The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

 $C_{\rm so}$; the basic dynamic load rating for 50 km rated fatigue life $C_{\rm so}$; the basic dynamic load rating for 100 km rated fatigue life

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

Front view

Side	view

		A	Assembly			Ball slide								
	Model No.	Height			Width	Length		Mounting hole				Width	Height	Pitch
Widdor No											_			
		Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L_1	K	W_1	H_1	F
	LU09BL	10	2.2	5.5	20	41	15	16	M2×0.4×2.5	31.2	7.8	9	5.5	20
	LU09UL	10	2.2	0.0	20	41	15	10	M3×0.5×3	51.2	7.0		0.0	20
	LU12BL	13	3	7.5	27	47.5	20	20	M2.5×0.45×3	35.3	10	12	7.5	25
	LU12UL	10		7.0		-7.5	20	20	M3×0.5×3.5	00.0		12	7.0	20
	LU15BL	16	4	8.5	32	61	25	25	M3×0.5×4	44.4	12	15	9.5	40

Notes 1) LU09UL is available only in stainless steel.

2) LU15BL is equipped with ball retainer.

	Rail				Basic load rating								Weight	
	Mounting bolt	G	Max. length	³ Dynamic Static Static moment (N·m)								Ball	Rail	
	hole		L _{omax} .	[50km]	[100km]	С о	$M_{\rm RO}$	M	PO	M	YO	slide		
	$d \times D \times h$	(reference)	() for stainless	C ₅₀ (N)	$C_{100}(N)$	(N)		One slide	Two slides	One slide	Two slides	(g)	(g/100 mm)	
	2.6×4.5×3	7.5	1 200	2 600	2 070	3 900	17.9	17.2	98.0	17.2	98.0	29	35	
	3.5×6×4.5	7.0	(600)	2 000	2 070	0.000	17.0	17.2	50.0	17.2	55.0	20		
	3×5.5×3.5	10	1 800	4 000	3 150	5 700	34.5	28.3	169	28.3	169	59	65	
_	3.5×6×4.5	10	(800)	+ 000	0 100	0,00	04.0	20.0	100	20.0	100	00		
	3.5×6×4.5	15	2 000 (1 000)	8 100	6 400	11 300	84.5	69.5	435	69.5	435	107	105	

3) The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2) $C_{so;}$ the basic dynamic load rating for 50 km rated fatigue life $C_{so;}$ the basic dynamic load rating for 100 km rated fatigue life

NSK

Unit: mm

A-5-2.3 PE Series (Miniature wide type)

Features Ideal for use of single rail

The PE Series linear guides are miniature and wide rail type. Thanks to the wide rail, load carrying capacity is high against moment load from rolling direction.

(2) Motion performance

Newly designed recirculation component facilitates smooth circulation of steel balls.

(3) Lightweight

The ball slide is fabricated to be approximately 20% lighter than that of the LE Series by the application of resin to a part of its body.

(4) Reduced noise intensity

Resin components applied in ball circulating circuits reduce collision noise between steel balls and the inner wall of circulating circuits.

(5) Low dust generation

The structure is designed to prevent dust generation.

(6) Excellent dust-proofing

It is designed to minimize the clearance between the side of rails and the inner walls of the slide, and prevent foreign matters from entering the ball slide.

(7) High corrosion resistance

High corrosion-resistant martensite stainless steel incorporated as a standard feature provides excellent resistance to corrosion.

(8) Easy to handle

Safety design includes a retainer that prevents steel balls from dropping out of the ball slide even when the slide is removed from the rail.

(9) Long-term maintenance-free

Equipped with NSK K1 Lubrication Unit realizes long-term, maintenance-free use.

(10) Fast delivery

Lineup of random-matching rails and ball slides in the series supports random matching and facilitates fast delivery. (PE09 to PE15)

2. Ball slide shape

3. Accuracy and preload

(1) Running parallelism of ball slide Table 1

				Unit: µm		
		Preload	ed assembly type	e (not random ma	atching)	Random-matching type
Rail length (mm) over or less		Super precision P4	High precision P5	Precision grade P6	Normal grade PN	Normal grade PC
-	50	2	2	4.5	6	6
50 –	80	2	3	5	6	6
80 –	125	2	3.5	5.5	6.5	6.5
125 –	200	2	4	6	7	7
200 –	250	2.5	5	7	8	8
250 –	315	2.5	5	8	9	9
315 –	400	3	6	9	11	11
400 -	500	3	6	10	12	12
500 -	630	3.5	7	12	14	14
630 -	800	4.5	8	14	16	16
800 – 1	000	5	9	16	18	18
1 000 – 1	250	6	10	17	20	20

I Init: um
PE Series

(2) Accuracy standard

The preloaded assembly type has four accuracy grades; Super precision P4, High precision P5, Precision P6, and Normal PN grades, while the random-matching type has Normal grade PC only.

Table 2 shows the accuracy standard for the preloaded assembly type while Table 3 shows the accuracy standard for the random-matching types.

Tolerance of preloaded assembly

	Unit: µm			
Accuracy grade Characteristics	Super precision P4	High precision P5	Precision grade P6	Normal grade PN
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 5	±15 7	±20 15	±40 25
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 7	±20 10	±30 20	±50 30
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	Shown in Table 1 and Fig. 2			

Tolerance of random-matching type: Normal grade PC

Tabl	e 3 Unit: μm	
Model No. Characteristics	PE09, 12 and 15	
Mounting height H	±20	
Variation of mounting height H	15① 30②	
Mounting width W_2 or W_3	±20	
Variation of mounting width W_2 or W_3	20	
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	Shown in Table 1 and Fig. 2	

Note: ① Variation on the same rail ② Variation on multiple rails

(3) Assembled accuracy

(4) Preload and rigidity

We offer three levels of preload: Slight preload Z1 and Fine clearance Z0, along with randommatching type of Fine clearance ZT. Values for preload and rigidity of the preloaded assembly types are shown in Table 4. Rigidities are for the median of the preload range.

· Preload and rigidity of preloaded assembly

	Table 4	Table 4						
	Preload	Rigidity						
Model No.	(N)	(N/µm)						
	Slight preload (Z1)	Slight preload (Z1)						
PE05AR	0 – 28	45						
PE07TR	0 – 29	46						
PE09TR	0 – 37	61						
PE12AR	0 - 40	63						
PE15AR	0 - 49	66						
PE09UR	0 - 54	86						
PE12BR	0 – 59	97						
PE15BR	0 – 75	114						
	PE05AR PE07TR PE09TR PE12AR PE15AR PE09UR PE12BR	Preload (N) Slight preload (Z1) PE05AR 0 - 28 PE07TR 0 - 29 PE09TR 0 - 37 PE12AR 0 - 40 PE15AR 0 - 49 PE09UR 0 - 54 PE12BR 0 - 59						

	Note: Clearance of	f Fine clearance	Z0 is 0 to 3 um.	Therefore, preload is zero.
--	--------------------	------------------	------------------	-----------------------------

Clearance of random-matching type

	Tab	le 5 Unit: µm
	Model No.	Fine clearance
woder no.		ZT
ard	PE09TR	
High-load Standard type type	PE12AR	3 or less
	PE15AR	
oad 9	PE09UR	
High-lo type	PE12BR	5 or less
	PE15BR	

4. Maximum rail length

Table 6 shows the limitations of rail length. However, the limitations vary by accuracy grades.

Table 6 Length limitations of rails							
Unit: mm							
Series	Size						
Series	Material	05	07	09	12	15	
PE	Stainless steel	150	600	800	1 000	1 200	

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

С

5. Installation

(1) Permissible values of mounting error

Table 7						Unit: µm
Value	Dualaad					
value	Preload	PE05	PE07	PE09	PE12	PE15
Permissible values of	Z0, ZT	10 12 15 18 22				
parallelism in two rails <i>e</i> 1	Z1	5	7	10	13	17
Permissible values of	Z0, ZT	50 μm/200 mm				
parallelism (height) in two rails e_2	Z1	35 µm/200 mm				

(2) Shoulder height of the mounting surface and corner radius r

	U	nit: mm			
Model No.	Corner radiu	s (maximum)	Shoulde	0	
woder No.	ra	r _b	H′	H″*	
PE05	0.2	0.2	1.1	2.5	
PE07	0.2	0.3	1.7	3	
PE09	0.3	0.3	3.5	2.8	
PE12	0.3	0.3	3.5	3.2	
PE15	0.3	0.5	3.5	4.1	

*) H" is the minimum recommended value based on the dimension T in dimension table.

6. Lubrication accessory

Model of PE15 can select drive-in type grease fitting as an option. For the model of PE05 to PE12, apply grease directly to the ball grooves of rail using a point nozzle.

(1) Standard specification

End seal: Provided to both ends of the ball slide as a standard feature. Seal friction per standard ball slide is shown in **Table 9**.

Table 9 Seal friction per ball slide (maximum value)

					Unit. N
Series Size	05	07	09	12	15
PE	0.4	0.4	0.8	1	1.2

(2) NSK K1[™] lubrication unit

Table 10 shows the dimension of linear guides equipped with the NSK K1 lubrication unit.

			Table 10			Unit: mm
Model No.	Ball slide length	Ball slide model	Standard ball slide length	Ball slide length equipped with two NSK K1 L	Thickness of NSK K1, V ₁	Thickness of protective cover, V ₂
PE05	Standard	AR	24.1	28.9	2	0.4
PE07	Standard	TR	31.1	37.1	2.5	0.5
PE09	Standard	TR	39.8	46.8	3	0.5
FE09	Long	UR	51.2	58.2	- 3	0.5
PE12	Standard	AR	45	53	3.5	0.5
PEIZ	Long	BR	60	68	3.5	0.5
PE15	Standard	AR	56.6	66.2	4	0.8
FE10	Long	BR	76	85.6	4	0.8

Note: Ball slide length equipped with NSK K1 =

(Standard ball slide length) + (Thickness of NSK K1, $V_{\tau} \times Number$ of NSK K1) + (Thickness of the protective cover $V_{z} \times 2)$

Drive-in type

PE Series

8. Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

(2) Reference number for random-matching type

Reference number coding for the assembly of random-matching type is the same as that of the preloaded assembly. However, only preload code of "Fine clearance T" is available (refer to page A216).

Table 11 Material/surface treatment code					
Code	Description				
К	Stainless steel				
Н	Stainless steel with surface treatment				
Z	Other, special				

Table 12	Accuracy	code
----------	----------	------

Accuracy	Standard (Without NSK K1)	With NSK K1	With NSK K1 for food and medical equipment
Super precision grade	P4	K4	F4
High precision grade	P5	K5	F5
Precision grade	P6	K6	F6
Normal grade	PN	KN	FN
Normal grade (random-matching type)	PC	КС	FC

Note: Refer to pages A38 and A61 for NSK K1 lubrication unit.

Size

	Н	E	W_{2}	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	К	Т	Hole size	<i>T</i> 1	N	W_1	<i>H</i> ₁
PE05AR	6.5	1.4	3.5	17	24.1	13	—	M2.5×0.45×1.5	16.4	5.1	2.5	\$ 0.9	1.3	—	10	4
PE07TR	9	2	5.5	25	31.1	19	10	M3×0.5×2.8	20.8	7	3	\$1.9	1.9	—	14	5.2
PE09TR PE09UR	12	4	6	30	39.8 51.2	21 23	12 24	M3×0.5×3	26.6 38	8	2.8	φ2	2.3	—	18	7.5
PE12AR PE12BR	14	4	8	40	45 60	28	15 28	M3×0.5×4	31 46	10	3.2	φ2.5	2.7	—	24	8.5
PE15AR PE15BR	16	4	9	60	56.6 76	45	20 35	M4×0.7×4.5	38.4 57.8	12	4.1	ø 3	3.2	(3.3)	42	9.5

Notes: 1) Ball slide of PE05AR has only two mounting tap holes in the center.

Reference number for ball slide of random-matching type

Option code -K: Equipped with NSK K1 Material code S: Stainless stee

Reference number for rail of random-matching type

<u>P1E150470 R K</u>	<u>N -** PC T</u>
Random-matching rail series code	Preload code (See page A216.
P1E: PE Series random-matching rail	T: Fine clearance
Size	Accuracy code: PC
Rail length (mm)	PC: Normal grade is only available Design serial number
Rail shape code	Added to the reference number
R: PE09, 12. P: PE15	*Butting rail specification
Material/surface treatment code (See Table 11.)	N: Non-butting. L: Butting specification
	*Please consult with NSK for butting rail specification.

Unit: mm

R	ail					Basic load rating					Weight			
	Pitch	Mounting bolt	G	Maximum	²⁾ Dyn	²⁾ Dynamic			Static momen		t (N∙m)		Ball	Rail
		hole		length	[50km]	[100km]	С о	M _{RO}	M	PO	M	YO	slide	
B_2	F	$d \times D \times h$	(reference)	L _{0max}	$C_{50}(N)$	$C_{100}(N)$	(N)		One slide	Two slides	One slide	Two slides	(g)	(g/100 mm)
—	20	3×5×1.6	7.5	150	690	550	1 160	6.00	2.75	17.5	2.75	17.5	7	34
_	30	3.5×6×3.2	10	600	1 580	1 260	2 350	16.7	7.20	46.0	7.20	46.0	19	55
	30	3.5×6×4.5	10	800	3 000	2 390	4 500	36.5	17.3	113	17.3	113	35	95
	50	0.0×0×4.0	10	000	4 000	3 150	6 700	54.5	37.5	210	37.5	210	50	55
	40	4.5×8×4.5	15	1 000	4 350	3 450	6 350	70.5	29.3	180	29.3	180	66	140
	40	4.5×6×4.5	15	1 000	5 800	4 600	9 550	106	63.5	345	63.5	345	98	140
23	40	4.5×8×4.5	15	1 200	7 600	6 050	10 400	207	59.0	370	59.0	370	140	275
23	40	4.57674.5	13	1 200	10 300	8 200	16 000	320	135	740	135	740	211	275

2) The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2) $C_{\rm sor}$ the basic dynamic load rating for 50 km rated fatigue life $C_{\rm sor}$ the basic dynamic load rating for 100 km rated fatigue life

3) To fix rail of PE05AR, use M2.5 \times 0.45 cross-recessed pan head machine screw for precision instrument.

(JCIS 10-70 No. 0 pan head machine screw No.3.) (JCIS: Japanese Camera Industrial Standard.)

NSK

-M×8

PE09, 12

A-5-2.4 LE Series (Miniature wide type)

Fig. 1 LE Series

Features Ideal for use of single rail

The LE Series linear guides are miniature and wide rail type. Thanks to the wide rail, load carrying capacity is high against moment load from rolling direction.

(2) Equal load carrying capacity in vertical and lateral directions

Contact angle is set at 45 degrees, equally dispersing the load from vertical and lateral directions. This also provides equal rigidity in the two directions.

(3) Guides are super-thin.

Super-thin guides owe their design to the single ball groove on right and left sides (Gothic arch).

(4) High accuracy

Fixing the master rollers to the ball grooves is easy thanks to the Groove arch groove. This makes easy and accurate measuring of ball grooves.

(5) Stainless steel is standard.

Rails and ball slides are made of martensitic stainless steel.

(6) Ball retainer is available in some series.

Some series come with a ball retainer (ball slide shape: AR and TR). Balls are retained in the retainer and do not fall out when a ball slide is withdrawn from the rail (random-maching type ball slides come with a ball retainer).

(7) Fast delivery

Random matching of rails and ball slides are available. (LE09 to LE15)

Fig. 2 Balls in contact

2. Ball slide shape

Specification	Detail		Туре	
Mounting hole	Normal	CL*	AL, AR	BL*
woulding hole	Large	SL*	TL, TR	UL*
Pall retainer	Without	CL, SL	AL, TL	BL, UL
Ball retainer	With	_	AR, TR	_

* Only applicable to LE09

3. Accuracy and preload

(1) Running parallelism of ball slide

	Unit: µm			
	Preloaded asser	mbly type (not rar	ndom matching)	Random-matching type
Rail length (mm) over or less	High precision P5	Precision grade P6	Normal grade PN	Normal grade PC
- 50	2	4.5	6	6
50 - 80	3	5	6	6
80 - 125	3.5	5.5	6.5	6.5
125 – 200	4	6	7	7
200 - 250	5	7	8	8
250 - 315	5	8	9	9
315 – 400	6	9	11	11
400 - 500	6	10	12	12
500 - 630	7	12	14	14
630 - 800	8	14	16	16
800 – 1 000	9	16	18	18
1 000 – 1 250	10	17	20	20

NSK

LE Series

(2) Accuracy standard

The preloaded assembly type has three accuracy grades; High precision P5, Precision P6, and Normal PN grades, while the random-matching type has Normal grade PC only.

Table 2 shows the accuracy standard for the preloaded assembly type while Table 3 shows the accuracy standard for the random-matching type.

Tolerance of preloaded assembly

	Unit: µm			
Accuracy grade Characteristics	High precision P5	Precision grade P6	Normal grade PN	
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±15 7	±20 15	±40 25	
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±20 10	±30 20	±50 30	
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	Refer to Table 1 and Fig. 3			

Tolerance of random-matching type: Normal grade PC

Tabl	e 3 Unit: μm
Accuracy grade Characteristics	LE09, 12, 15
Mounting height H	±20
Variation of mounting height H	40
Mounting width W_2 or W_3	±20
Variation of mounting width W_2 or W_3	40
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	Refer to Table 1 and Fig. 3

(3) Assembled accuracy

(4) Preload and rigidity

We offer three levels of preload: Slight preload Z1 and Fine clearance Z0 for the preloaded assembly type, along with Fine clearance ZT for the random-matching type. Values for preload and rigidity of the preloaded assembly type are shown in **Table 4**. Rigidities are for the median of the preload range.

· Preload and rigidity of preloaded assembly

	Table 4		
		Preload	Rigidity
	Model No.	(N)	(N/µm)
	Model No.	Slight preload	Slight preload
		(Z1)	(Z1)
pe	LE05 AL	0 – 23	36
Standard type	LE07 TL	0 – 29	46
larc	LE09 AL, TL, AR, TR	0 – 37	61
anc	LE12 AL, AR	0 - 40	63
St	LE15 AL, AR	0 - 49	66
pe	LE05 CL	0 – 18	29
Medium-load type	LE07 SL	0 – 16	28
ium- type	LE09 CL, SL	0 – 21	33
edi	LE12 CL	0 – 23	36
Σ	LE15 CL	0 – 29	44
p	LE07 UL	0 - 43	71
gh-loa type	LE09 BL, UL	0 - 54	86
High-load type	LE12 BL	0 - 59	97
Т	LE15 BL	0 – 75	114

Note: The clearance of Fine clearance Z0 is 0 to 3 μ m. Therefore, preload is zero. However, the clearance of the Z0 of PN grade is 3 to 10 μ m.

Clearance of random-matching type

	Table 5	Unit: µm
Model No.		Fine clearance
woder no.		ZT
LE09		
LE12		0 – 15
LE15		

4. Maximum rail length

 Table 6 shows the limitations of rail length. The limitations vary by accuracy grades.

Table 6 Length limitation of rails

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

Table 7								
Value	Dualaad			Model No.				
value	Preload	LE05	LE07	LE09	LE12	LE15		
Permissible values of	Z0, ZT	10	12	15	18	22		
parallelism in two rails <i>e</i> 1	Z1	5	7	10	13	17		
Permissible values of	Z0, ZT	50 μm/200 mm						
parallelism (height) in two rails e_2	Z1	35 µm/200 mm						

(2) Shoulder height of the mounting surface and corner radius r

			Unit: mm			
Model No.	Corner radius	s (maximum)	Shoulde	Shoulder height		
would no.	Γ _a	Γ _b	H	H"		
LE05	0.2	0.2	1.1	2		
LE07	0.2	0.3	1.7	3		
LE09	0.3	0.3	3.5	3		
LE12	0.3	0.3	3.5	4		
LE15	0.3	0.5	3.5	5		

Fig. 6 Shoulder for the rail datum surface

Fig. 7 Shoulder for the ball slide datum surface

6. Lubrication accessories

Model of LE15AR can select drive-in type grease fitting as option. There is no standard grease fitting for LE05 to LE12. For the models of LE05 to LE15 except for LE15AR, apply grease directly to the ball grooves of rail, using a point nozzle.

7. Dust-proof components

(1) Standard specification

End seal: Provided to both ends of the ball slide as a standard feature. · Seal friction per standard ball slide is shown in Table 9.

Table 9 Seal friction per ball slide (maximum value)

					Unit: N
Series Size	05	07	09	12	15
LE	0.4	0.4	0.8	1.0	1.2

(2) NSK K1[™] lubrication unit

The installed dimensions of NSK K1 lubrication unit are shown in Table 10.

Table 10											
Model No.	Ball slide length	Ball slide model	Standard ball slide length	Ball slide length installed with two NSK K1 <i>L</i>	Per NSK K1 thickness V1	Protective cove thickness V ₂					
	Standard	TL	31	37							
LE07	Long	UL	42	48	2.5	0.5					
Short		SL	22.4	28.4							
	Standard	AL, TL	39	46							
	Standard	AR, TR	39.8	46.8		0.5					
LE09	Long	BL, UL	50.4	57.4	3.0	0.5					
	Short	CL, SL	26.4	33.4							
	Standard	AL	44	52							
1 510	Standard	AR	45	53		0.5					
LE12	Long	BL	59	67	3.5	0.5					
	Short	CL	30.5	38.5							
	Standard	AL	55.0	64.6							
	Standard	AR	56.6	66.2							
LE15	Long	BL	74.4	84	4.0	0.8					
	Short	CL	41.4	51	1						

Note: Ball slide length equipped with NSK K1 =

(Standard ball slide length) + (Thickness of NSK K1, $V_1 \times$ Number of NSK K1) + (Thickness of the protective cover $V_2 \times 2$)

Drive-in type

LE Series

LE Series

8. Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

(2) Reference number for random-matching type

The reference number coding for the assembly of random-matching type is the same as that of the preloaded assembly. However, only the preload code of "Fine clearance T" is available (refer to page A226).

Table 1	Table 11 Material/surface treatment code								
Code	Description								
К	Stainless steel								
Н	Stainless steel with surface treatment								
Z	Other, special								

Table 12 Accuracy code

Accuracy	Standard (Without NSK K1)	With NSK K1
High precision grade	P5	K5
Precision grade	P6	K6
Normal grade	PN	KN
Normal grade (random-matching type)	PC	KC

Note: Refer to page A38 for NSK K1 lubrication unit.

9. Dimensions

LE-AL (Standard type / Standard) LE-TL (Standard type / Standard, large mounting hole) LE-AR (Standard type / Standard, with ball retainer) LE-TR (Standard type / Standard, large mounting hole, with ball retainer)

Front view

Side view

1 E05

 $4 - M \times \ell$

	A	Assembly Ball slide						Ball slide									
Model No.	Height			Width	Length		Mou	inting hole						Width	Height		Pitch
Model No.											Hole						
	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	K	size	T_1	Ν	W_1	H_1	B_2	F
LE05AL	6.5	1.4	3.5	17	24	13	—	M2.5×0.45×2	17	5.1	—	—	—	10	4	—	20
LE07TL	9	2	5.5	25	31	19	10	M3×0.5×3	21.2	7	—	—	_	14	5.2	—	30
LE09AL LE09TL	12	4	6	30	39	21	12	M2.6×0.45×3 M3×0.5×3	27.6	8	—	—	—	18	7.5	—	30
LE09AR LE09TR	12	4	6	30	39.8	21	12	M2.6×0.45×3 M3×0.5×3	27.6	8	—	_	_	18	7.5	—	30
LE12AL LE12AR	14	4	8	40	44 45	28	15	M3×0.5×4	31	10	_	—	—	24	8.5	—	40
LE15AL LE15AR	16	4	9	60	55 56.6	45	20	M4×0.7×4.5	38.4	12	 φ3	 3.2	3	42	9.5	23	40

Notes: 1) Ball slide of LE05 has only two mounting tap holes.

Reference number for ball slide of random-matching type Random matching with retainer: LAE09AR/TR, LAE12AR, LAE15AR

LAE-AR (With ball retainer)

LAE-TR (Large mounting hole with ball retainer)

Reference number for rail of random-matching type

Unit: mm

Rail					Ba	sic load	rating				We	ight						
Mounting bolt	G	Max.	2)Dyn	amic	Static		Static moment (N·m)				Ball	Rail						
hole		length	[50km]	[100km]	С о	MRO	M _{PO}		M _{PO}		M _{PO}		M _{PO}		M	YO	slide	
$d \times D \times h$	(reference)	L_{0max}	C ₅₀ (N)	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(g)	(g/100 mm						
3×5×1.6	7.5	150	725	575	1 110	5.65	2.58	16.9	2.58	16.9	11	34						
3.5×6×3.2	10	600	1 580	1 260	2 350	16.7	7.20	46.0	7.20	46.0	25	55						
3.5×6×4.5	10	800	3 000	2 400	4 500	36.5	17.3	110	17.3	110	40	95						
3.5×6×4.5	10	800	3 000	2 400	4 500	36.5	17.3	113	17.3	113	40	95						
4.5×8×4.5	15	1 000	4 350	3 450	6 350	70.5	29.3	175 180	29.3	175 180	75	140						
4.5×8×4.5	15	1 200	7 600	6 050	10 400	207	59.0	360 370	59.0	360 370	150	275						

2) The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

Cost the basic dynamic load rating comply with the 150 standard (100 147207), 1472072
 Cost the basic dynamic load rating for 50 km rated fatigue life Cost the basic dynamic load rating for 100 km rated fatigue life 3) For fixing a rail of LE05AL, use M2.5 × 0.45 cross-recessed pan head machine screw for precision instruments. (JCIS 10-70: No.0 pan head machine screw No.3) (JCIS: Japanese Camera Industrial Standard)

LE Series

LE-BL (High-load type / Long) LE-UL (High-load type / Long, large mounting hole)

Front view

	A	ssemb	ly		Ball slide									
Model No	Height			Width	Length		Mounting hole				Width	Height		Pitch
Woder No	H	E	W ₂	W	L	В	J	$M \times \text{pitch} \times \ell$	<i>L</i> ₁	К	<i>W</i> ₁	H ₁	B_2	F
LE07UL	9	2	5.5	25	42	19	19	M3×0.5×3	32.2	7	14	5.2	—	30
LE09BL LE09UL	12	4	6	30	50.4	23	24	M2.6×0.45×3 M3×0.5×3	39	8	18	7.5	_	30
LE12BL	14	4	8	40	59	28	28	M3×0.5×4	46	10	24	8.5	—	40
LE15BL	16	4	9	60	74.4	45	35	M4×0.7×4.5	57.8	12	42	9.5	23	40

Side view

											ι	Jnit: mm
Rail					Ba	sic load	rating				We	ight
Mounting bolt	G	Max.	¹⁾ Dyn	amic	Static	Static Static moment (N·m)				Ball	Rail	
hole		length	[50km]	[100km]	С о	M _{RO}	M	M _{PO}		YO	slide	
$d \times D \times h$	(reference)	L _{omax}	C ₅₀ (N)	$C_{100}(N)$	(N)		One slide	Two slides	One slide	Two slides	(g)	(g/100 mm)
3.5×6×3.2	10	600	2 180	1 730	3 700	26.4	17.3	94.5	17.3	94.5	39	55
3.5×6×4.5	10	800	4 000	3 150	6 700	54.5	37.5	206	37.5	206	58	95
4.5×8×4.5	15	1 000	5 800	4 600	9 550	106	63.5	340	63.5	340	115	140
4.5×8×4.5	15	1 200	10 300	8 200	16 000	320	135	725	135	725	235	275

Note: 1) The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

 $C_{\rm 50}$; the basic dynamic load rating for 50 km rated fatigue life

 C_{100} ; the basic dynamic load rating for 100 km rated fatigue life

NSK

LE-CL (Medium-load type / Short) LE-SL (Medium-load type / Short, large mounting hole)

	A	ssembl	ly				В	all slide						
Model No	Height			Width	Length		Mou	Inting hole			Width	Height		Pitch
	Н	E	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L1	К	<i>W</i> ₁	<i>H</i> ₁	B_2	F
LE05CL	6.5	1.4	3.5	17	20	13	—	M2.5×0.45×2	13	5.1	10	4	—	20
LE07SL	9	2	5.5	25	22.4	19	_	M3×0.5×3	12.6	7	14	5.2	_	30
LE09CL LE09SL	12	4	6	30	26.4	21	_	M2.6×0.45×3 M3×0.5×3	15	8	18	7.5	_	30
LE12CL	14	4	8	40	30.5	28	_	M3×0.5×4	17.5	10	24	8.5	_	40
LE15CL	16	4	9	60	41.4	45	_	M4×0.7×4.5	24.8	12	42	9.5	23	40

Notes: 1) Ball slide of CL and SL types have only two mounting tap holes in the center.

Side view

											ι	Jnit: mm
Rail					Ba	sic load	rating				Weight	
Mounting bolt	G	Max.	²⁾ Dynamic		Static		Static	momen	t (N·m)		Ball	Rail
hole		length	[50km]	[100km]	С о	M _{RO}	M	PO	M	YO	slide	
$d \times D \times h$	(reference)	L _{0max}	C ₅₀ (N)	$C_{100}(N)$	(N)		One slide	Two slides	One slide	Two slides	(g)	(g/100 mm)
3×5×1.6	7.5	150	595	470	835	4.25	1.51	10.0	1.51	10.0	8	34
3.5×6×3.2	10	600	980	775	1 170	8.35	2.01	18.5	2.01	18.5	17	55
3.5×6×4.5	10	800	1 860	1 480	2 240	18.2	4.85	41.0	4.85	41.0	25	95
4.5×8×4.5	15	1 000	2 700	2 140	3 150	35.0	8.15	67.0	8.15	67.0	50	140
4.5×8×4.5	15	1 200	5 000	3 950	5 650	113	19.4	162	19.4	162	110	275

2) The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

C₅₀; the basic dynamic load rating for 50 km rated fatigue life C₁₀₀; the basic dynamic load rating for 100 km rated fatigue life

3) For fixing a rail of LE05CL, use cross-recessed pan head machine screw for precision instruments M2.5 × 0.45 (JCIS 10-70: Japan Camera Industry Association, No.0, class 3).

A-5-2.5 Miniature LH Series

1. Features (1) High self-aligning capability (rolling direction)

Same as the DF combination in angular contact bearings, self-aligning capability is high because the cross point of the contact lines of balls and grooves comes inside, and thus reducing moment rigidity.

This increases the capacity to absorb errors in installation.

(2) High load carrying capacity to vertical direction

The contact angle is set at 50 degrees, and thus increasing load carrying capacity as well as rigidity in vertical direction.

(3) High resistance against impact load

The bottom ball groove is formed in Gothic arch and the center of the top and bottom grooves are offset as shown in **Fig. 2**. The vertical load is generally carried by the top ball rows, where balls are contacting at two points. Because of this design, the bottom ball rows will carry load when a large impact load is applied vertically as shown in **Fig. 3**. This assures high resistance to the impact load.

(4) High accuracy

As showing in **Fig. 4**, fixing the master rollers to the ball grooves is easy thanks to the Gothic arch groove. This makes easy and accurate measuring of ball grooves.

(5) High corrosion resistance

High corrosion-resistant martensite stainless steel is incorporated as a standard feature to provides excellent corrosion resistance.

(6) Easy to handle

Safety design includes a retainer that prevents steel balls from dropping out of the ball slide even when the slide is removed from the rail. (LH10-12)

(7) Long-term maintenance-free

Superb features of NSK K1 Lubrication unit realize a long-term, maintenance-free operation.

Fig. 1 LH Series

Fig. 2 Enlarged illustration of the offset Gothic arch groove

Fig. 3 When load is applied

Fig. 4 Rail grinding and measuring

2. Ball slide shape

3. Accuracy and preload

(1) Running parallelism of ball slide

	Unit: µm			
		Preloaded	assembly	
Rail length (mm)	Super	High	Precision	Normal
over or less	precision P4	precision P5	grade P6	grade PN
- 50	2	2	4.5	6
50 - 80	2	3	5	6
80 – 125	25 2 3.5		5.5	6.5
125 – 200	2	4	6	7
200 - 250	2.5	5	7	8
250 – 315	0 – 315 2.5		8	9
315 – 400	3	6	9	11
400 - 500	400 - 500 3		10	12
500 - 630	3.5	7	12	14
630 – 800	4.5	8	14	16

(2) Accuracy standard

The preloaded assembly has four accuracy grades; Super precision P4, High precision P5, Precision P6 and Normal PN grades.

Tolerance of preloaded assembly

	Table 2			Unit: µm			
Accuracy grade Characteristics	Super precision P4	High precision P5	Precision grade P6	Normal grade PN			
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 3	±20 5	±40 7	±80 15			
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±10 5	±15 7	±25 10	±50 20			
Running parallelism of surface C to surface A Running parallelism of surface D to surface B							

(3) Combinations of accuracy and preload

Table 3	
---------	--

			Accuracy grade				
		Super precision	High precision	Precision grade	Normal grade		
Wit	hout NSK K1 lubrication unit	P4	P5	P6	PN		
Wit	h NSK K1 lubrication unit	K4	K5	K6	KN		
With	NSK K1 for food and medical equipment	F4	F5	F6	FN		
Pre	Fine clearance Z0	0	0	0	0		
Preload	Slight preload Z1	0	0	0	0		

(4) Assembled accuracy

Fig. 5

(5) Preload and rigidity

We offer two levels of preload: Slight preload Z1 and Fine clearance Z0.

Preload and rigidity of preloaded assembly

	Table 4											
		Proload (NI)	Rigidity	(N/μm)								
	Model No.	Preload (N)	Vertical direction	Lateral direction								
		Slight preload Z1	Slight preload Z1	Slight preload Z1								
LH08AN		5	33	23								
LH10AN		9	44	31								
LH12AN		22	68	47								

Note: Clearance for Fine clearance Z0 is 0 to 3 $\mu m.$ Therefore, preload is zero. However, Z0 of PN grade is 0 to 5 $\mu m.$

4. Maximum rail length

Table 5 shows the limitations of rail length (maximum length). However, the limitations vary byaccuracy grades.

Table 5 Length limitations of rails

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

Fig. 6

Fig. 7

Table 6											
Value	Preload		Model No.								
value	Fleidau	LH08	LH10	LH12							
Permissible values of	ZO	9	12	19							
parallelism in two rails <i>e</i> 1	Z1	8	11	18							
Permissible values of	ZO	375µm/500mm									
parallelism (height) in two rails $e_{\scriptscriptstyle 2}$	Z1	330µm/500mm									

(2) Shoulder height of the mounting surface and corner radius r Table 7

Unit: mm

Model No.	Corner radius	s (maximum)	Shoulder height			
woder no.	ľ _a	ſ	H'	H"		
LH08	0.3 0.5		1.8	3		
LH10	0.3	0.5	2.1	4		
LH12	0.5	0.5	2.7	4		

NSK

g. 8 Shoulder for the rail datum surface

rig. 9 Shoulder for the bal slide datum surface

Miniature LH Series

6. Lubrication accessory

Model of LH12 can select drive-in type grease fitting as an option.

For the models of LH08 to LH10, apply grease directly to the ball grooves of rail using a point nozzle.

7. Dust-proof components

(1) Standard specification

The LH Series can be readily used as they have a dust protection means for normal conditions. As the standard equipment, the ball slides have an end seal on both ends, and bottom seals at the bottom.

However, the bottom seals are not used to LH08 and 10.

Table 8 Seal friction per ball slide (maximum value)

				Unit: N
Series	Size	08	10	12
	LH	0.5	1	1.5

(2) NSK K1[™] lubrication unit

Table 9 shows the dimension of linear guides equipped with the NSK K1 lubrication unit

	Table 9 Unit: mm											
Model No.	Ball slide length	Ball slide model			Ball slide length Istalled with two NSK K1 L V, thickness		Protruding area of the grease fitting N					
LH08	Standard	AN	24	31	3	0.5	—					
LH10	Standard	AN	31	40	4	0.5	_					
LH12	Standard	AN	45	54	4	0.5	(4)					

Notes: 1) NSK K1 for food and medical equipment are available for LH12.

2) Ball slide length equipped with NSK K1 = (Standard ball slide length) + (Thickness of NSK K1, V, × Number of NSK K1) + (Thickness of the protective cover, V₂ × 2)

Grease fitting

(3) Cap to plug the rail mounting bolt hole

Table 10 Caps to plug rail bolt hole

Model No.	Bolt to	Сар	Quantity				
	secure rail	reference No.	/case				
LH12	M3	LG-CAP/M3	20				

NSK

Miniature LH Series

8. Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

Table 11 Material/surface treatment code

Code	Description
К	Stainless steel
Н	Stainless steel with surface treatment
Z	Other, special

Table 12 Accuracy code

Accuracy	Standard (Without NSK K1)	With NSK K1	With NSK K1 for food and medical equipment
Super precision grade	P4	K4	F4
High precision grade	P5	K5	F5
Precision grade	P6	K6	F6
Normal grade	PN	KN	FN

Note: Refer to pages A38 and A61 for NSK K1 lubrication unit.

9. Dimensions

		A	ssemb	bly		Ball slide											
Model No.		Height		Width	Length	gth Mounting ho		nting hole				Grease fitting		g	Width	Height	
IVIOUE	er no.	I NO.															
		Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	K	Т	Hole size	<i>T</i> ₁	N	W_1	H_1
LH0	8AN	11	2.1	4	16	24	10	10 10 M2×0.4×2.5		15	8.9	—	—	—	—	8	5.5
LH1	0AN	13	2.4	5	20	31	13	13 12 M2.6×0.45×3		20.2	10.6	6	—	—	—	10	6.5
LH1	2AN	20	3.2	7.5	27	45	15	15 15 M4×0.7×5			16.8	6	ø 3	5	4	12	10.5

Notes: 1) LH08 does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.

Rail						Basic load rating						Weight			
Pitch	Mounting	G	Max.	²⁾ Dyn	iamic	Static		Static r	moment	(N·m)		Ball	Rail		
	bolt hole		length	[50km]	[100km]	C_0	$M_{\rm RO}$	M _{PO}		Mpo		N	1 _{Y0}	slide	
F	$d \times D \times h$	(reference)	L _{0max}	$C_{50}(N)$	$C_{100}(N)$	(N)		One slide	Two slides	One slide	Two slides	(g)	(g/100 mm)		
20	2.4×4.2×2.3	7.5	375	1 240	985	2 630	7.25	4.55	32.5	3.8	27.2	13	31		
25	3.5×6×3.5	10	600	2 250	1 790	4 500	16.2	10.5	73.0	8.8	61.0	26	44		
40	3.5×6×4.5	15	800	5 650	4 500	11 300	47.5	41.5	254	35	214	82	88		

2) The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

C₅₀; the basic dynamic load rating for 50 km rated fatigue life C_{100} ; the basic dynamic load rating for 100 km rated fatigue life

NSK

Unit: mm

A-3-2.6 LL Series

1. Features (1) Super light-weight

This compact guide has a single ball groove on both right and left sides (Gothic arch). Rails and ball slides are made of stainless steel plate, therefore they are lightweight.

(2) Compact

The ball groove is made outside the ball slide to reduce overall size and to obtain high speed.

(3) High corrosion resistance

High corrosion resistant martensitic stainless steel is used as standard material.

2. Ball slide model

Fig. 1 LL Series structure

(1) Accuracy standard

The LL Series has a Normal grade PN as the accuracy grade.

Table 1 shows the tolerance.

Table 1 Tolerance of Normal grade (PN)

	Unit: µm
Model No. Characteristic	LL15
Mounting height	±20
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	20 (See Fig. 2 .)

Fig. 2 Standard LL

(2) Preload

We offer clearance for the LL Series. Table 2 shows the specification of clearance.

Table 2	Radial clearance	

	Unit: μm
Model No.	Clearance
LL15	0 – 10

4. Maximum rail length

Table 3 Length limitation of rails Unit: mm									
Series	Size Material								
LL	Stainless steel	40	60	75	90	120			

5. Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

L Series

	<	l		2-M	× P depth MT
		J	(J ₁)		$d \times D \times h$
			/	ſ/	
NSK					
$+ \bigcirc$	$(\uparrow) \cap$			\bigcirc	$ \bigcirc $
	ψ		Ψ		
	5.				
-		F			
G		N × F	= L		(G)
<		L)		>

Unit: mm

	Asse	mbly				Ball slide						
Model No.	Height		Width	Length		Mounting hole				Height	Pitch	
NOUEI NO.				Ũ								
	Н	W_1	W	l	J	$M \times pitch$	MT	J_1	Κ	H_1	F	Ν
											30	1
											40	1
LL15	6.5	15	10.6	27	13	M3×0.5	1.2	7	1.5	5	30	2
											40	2
											50	2

Notes:

1) The LL Series does not have a ball retainer. Be aware that the balls fall out when the ball slide is withdrawn from the rail.

2) Seals are not available. Please provide the dust-prevention measures on the equipment.

3) Do not use an installation screw on the ball slide which exceeds the dimension MT (maximum screw-in depth) in the dimension table.

4) To fix the rail, use M2 \times 0.4 cross recessed machine screw for precision instrument.

(JCIS10-70 No.0 pan head machine screw No.1)

(JCIS: Japanese Camera Industrial Standard)

												C	/IIIC. IIIIII
Rail					Basic load rating					Ball dia.	We	ight	
Mounting bolt				Length	⁵⁾ Dy	namic	Static	St	tatic mo	ment		Ball	Rail
hole					[50km]	[100km]	C₀	MRO	MPO	M _{YO}	Dw	slide	
$d \times D \times h$	NH	B₃	G	Lo	$C_{50}(N)$	$C_{100}(N)$	(N)	(N·m)	(N·m)	(N∙m)		(g)	(g)
			5	40									9
			10	60									11
2.4×5×0.4	1.2	7.5	7.5	75	880	700	785	7	3	3	2	6	13
			5	90									16
			10	120									21

5) $C_{\text{\tiny EO}}$; the basic dynamic load rating for 50 km rated fatigue life C_{100} ; the basic dynamic load rating for 100 km rated fatigue life NSK

NSK

1. RA Series	A253
2. LA Series	A271

A-5-3 Machine Tools

A-5-3.1 RA Series

Features Super-high load capacity

By installing rollers that are the largest possible diameter and length within the existing standard cross-section dimension in a rational layout based on our advanced analysis technology, we have realized the world's highest load capacity,* far superior to conventional roller guides. Superlong life is achieved and impact load can be sufficiently handled.

* As of September 1, 2003; NSK's reserch and comparison on the existing products of the same sizes.

(2) Super-high rigidity

Using NSK's advanced analysis technology, we pursued a complete, optimal design, down to the detailed shape of roller slides and rails, thereby realizing super-high rigidity superior to that of competitor's roller guides.

(3) Super-high motion accuracy

NSK has developed its own unique method of simulating rolling element passage vibration and method of designing optimal roller slide specifications for damping roller passage vibration. These developments have dramatically enhanced roller slide motion accuracy for the RA series.

(4) Smooth motion

Installation of a retaining piece between rollers restrains the roller skew peculiar to roller slides, thereby achieving smooth motion.

(5) Low friction

Using rollers for rolling elements helps minimize dynamic friction.

(6) Random matching

Random-matching of rails and roller slides are available. (RA25 to RA65)

Fig. 1 RA Series

Fig. 2 Analysis example

Fig. 3 Random-matching type

3. Accuracy and preload(1) Running parallelism of roller slide

	Ultra precision P3	Super precision P4	High precision ^{P5} PH	Precision grade P6
Rail length (mm)	Preloaded assembly	Preloaded assembly	Preloaded assembly Random-matching type	Preloaded assembly
- 50	2	2	2	4.5
50 - 80	2	2	3	5
80 - 125	2	2	3.5	5.5
125 – 200	2	2	4	6
200 - 250	2	2.5	5	7
250 - 315	2	2.5	5	8
315 - 400	2	3	6	9
400 - 500	2	3	6	10
500 - 630	2	3.5	7	12
630 - 800	2	4	8	14
800 – 1 000	2.5	4.5	9	16
1 000 – 1 250	3	5	10	17
1 250 – 1 600	4	6	11	19
1 600 – 2 000	4.5	7	13	21
2 000 – 2 500	5	8	15	22
2 500 – 3 150	6	9.5	17	25
3 150 – 3 500	9	16	23	30

Table 1

Unit: µm

(2) Accuracy standard

The preloaded assembly has four accuracy grades; Ultra precision P3, Super precision P4, High precision P5, and Precision P6 grades, while the random-matching type has High precision PH grade only.

• Tolerance of preloaded assembly	Unit: µm						
Accuracy grade Characteristics	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6			
Mounting height H	±8	±10	±20	±40			
Variation of H	3	5	7	15			
(All roller slides on a set of rails)							
Mounting width W_2 or W_3	±10	±15	±25	±50			
Variation of W_2 or W_3	3	7	10	20			
(All roller slides on reference rail)							
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	Shown in Table 1 and Fig. 4						

Tolerance of random-matching type

Та	able 3 Unit: µm
Accuracy grade Characteristics	High precision PH
Mounting height H	±20
Variation of mounting height H	15①
	25②
Mounting width W_2 or W_3	±25
Variation of mounting width W_2 or W_3	20
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	See Table 1 and Fig. 4

Note: 1 Variation on the same rail 2 Variation on multiple rails

(3) Combination of accuracy and preload

			Table 4							
			Accuracy grade							
		Ultra precision	Super precision	High precision	Precision grade	High precision				
	Without NSK K1 lubrication unit	P3	P4	P5	P6	PH				
With NSK K1 lubrication unit		K3	K4	K5	K6	КН				
	Slight preload Z1	0	0	0	0	_				
P	Medium preload Z3	0	0	0	0	—				
Preload	Random-matching type with slight preload ZZ	_	—		_	0				
0	Random-matching type with medium preload ZH		—		—	0				

Table 4

(4) Assembled accuracy

Fig. 4

(5) Preload and rigidity

Four types of preload are available: Medium preload Z3 and Slight preload Z1 for preloaded assembly, and Medium preload ZH and slight preload ZZ for Random-matching type.

Preload of preloaded assembly Table 5

	Table 5								
	Model No.	Preloa	ad (N)						
		Slight preload (Z1)	Medium preload (Z3)						
	RA15 AN, AL, EM	—	1 030						
Ð	RA20 AN, EM	—	1 920						
ťyp	RA25 AN, AL, EM	880	2 920						
ad	RA30 AN, AL, EM	1 170	3 890						
High-load type	RA35 AN, AL, EM	1 600	5 330						
igh	RA45 AN, AL, EM	2 780	9 280						
Т	RA55 AN, AL, EM	3 870	12 900						
	RA65 AN, EM	6 300	21 000						
Ð	RA15 BN, BL, GM	—	1 300						
ťyp	RA20 BN, GM	—	2 400						
ad	RA25 BN, BL, GM	1 060	3 540						
0	RA30 BN, BL, GM	1 430	4 760						
igh	RA35 BN, BL, GM	2 020	6 740						
Super-high-load type	RA45 BN, BL, GM	3 480	11 600						
npe	RA55 BN, BL, GM	5 040	16 800						
S	RA65 BN, GM	8 640	28 800						

Fig. 5 Direction of load

· Rigidity of medium preload

Fig. 6 Vertical direction theoretical rigidity line: High-load type (Roller slide shape: AN, AL, EM)

25

0

5 000

Fig. 7 Vertical direction theoretical rigidity line: Super-high-load type (Roller slide shape: BN, BL, GM)

NSK

4. Maximum rail length

Table 5 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grades.

Table 6 Length limitation of rails Unit: mm								Unit: mm
Series Size	15	20	25	30	35	45	55	65
RA	2 000	3 000	3 900	3 900	3 900	3 650	3 600	3 600

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

Fig. 8

Fig. 9

	Table 7 Unit: μm								
Value	Preload				Mc	del No.			
value	Fleidau	RA15	RA20	RA25	RA30	RA35	RA45	RA55	RA65
Permissible values of	Z1, ZZ	—	—	14	18	21	27	31	49
parallelism in two rails e1	Z3 , ZH	5	7	9	11	13	17	19	30
Permissible values of	Z1, ZZ	_	_			290 µm /	500 mm	1	
parallelism (height) in two rails e_2	Z3 , ZH				150 µm /	′ 500 mm	۱		

(2) Shoulder height of the mounting surface and corner radius r

		Table 8		Unit: mm
Model No.	Corner radiu	s (maximum)	Shoulde	r height
would wo.	r _a	ľ,	H	H"
RA15	0.5	0.5	3	4
RA20	0.5	0.5	4	5
RA25	0.5	1	4	5
RA30	1	1	5	6
RA35	1	1	5	6
RA45	1.5	1	6	8
RA55	1.5	1.5	7	10
RA65	1.5	1.5	11	11

RA25

RA30

RA35

20 000

15 000

10 000 Load N

Vertical direction rigidity (Super-high-load type)

6. Lubrication components

Refer to pages A38 and D13 for the lubrication of linear guides.

(1) Types of lubrication accessories

Fig. 14 and Table 11 show grease fittings and tube fittings.

(2) Mounting position of lubrication accessories

- · The standard position of grease fittings and tube fittings is the end face of roller slide. We can mount them on a side of end cap for an option. (Fig. 12) Please consult NSK for installation of grease or tube fittings to the roller slide body or the side of end cap.
- A lubrication hole can also be provided on the top of the end cap. Fig.13, Table 9 and Table 10 show the mounting position. A spacer is required for AN and BN shape roller slides. The spacers are available from NSK.
- . When using a piping unit with thread of $M6 \times 1$, you require a connector to connect it to a grease fitting mounting hole with M6 × 0.75. The connectors are available from NSK.

Fig. 12 Mounting position of lubrication accessories

Fig.13 Top and side lubrication hole positions

	Table 9 Top and side lubrication hole positions Unit:								
Model No.	Roller slide model	Grease fitting size	S_2	<i>T</i> ₂	O ring (JIS)	Spacer	D_1	S_1	T ₃
RA15		ø 3	4	7	P5	Necessary	8.2	4.4	4.2
RA20		φ3	4	4	P6	—	9.2	5.4	0.2
RA25		M6×0.75	6	10	P7	Necessary	10.2	6	4.5
RA30	AN, BN	M6×0.75	5	10	P7	Necessary	10.2	6	3.5
RA35		M6×0.75	5.5	15	P7	Necessary	10.2	7	7.4
RA45		Rc 1/8	7.2	20	P7	Necessary	10.2	7.2	10.4
RA55		Rc 1/8	7.2	21	P7	Necessary	10.2	7.2	10.4
RA65		Rc 1/8	7.2	19	P7	_	10.2	7.2	0.4

	Table 10 Top and side lubrication hole positions									
Model No.	Roller slide model	Grease fitting size	S_2	<i>T</i> ₂	O ring (JIS)	D_1	S_1	<i>T</i> ₃		
RA15	AL, BL, EM, GM	φ3	4	3	P5	8.2	4.4	0.2		
RA20	EM, GM	φ3	4	4	P6	9.2	5.4	0.2		
RA25		M6×0.75	6	6	P7	10.2	6	0.4		
RA30		M6×0.75	5	7	P7	10.2	6	0.4		
RA35	AL, BL, EM, GM	M6×0.75	5.5	8	P7	10.2	7	0.4		
RA45		Rc 1/8	7.2	10	P7	10.2	7.2	0.4		
RA55		Rc 1/8	7.2	11	P7	10.2	7.2	0.4		
RA65	EM, GM	Rc 1/8	7.2	19	P7	10.2	7.2	0.4		

Fig. 14 Grease fitting and tube fitting

7. Dust-proof components

(1) Standard specification

The RA series is equipped with end, inner* and bottom seals to prevent foreign matter from entering the inside of the roller slide. Under normal applications, the RA series can be used without modification.

For severe usage conditions, optional rail covers** are available. Contact NSK for information on how to mount the cover.

*) Inner seals for the models of RA15 and RA20 are available as options.

**) The rail cover is available to the models of RA25 to RA65.

Fig. 15

	Table 11 Unit: mm								
Model No.	Dust-proof	Grease fitting Drive-in fitting	Tube fitting						
	specification	Thread body length L	Thread body length L						
	Standard	5	-	_					
RA15	With NSK K1	10	-	NA					
hA 15	Double seal	8	-	é					
	Protector	8	-	Sallao					
	Standard	5	-	5					
RA20	With NSK K1	10	-						
hA20	Double seal	8	-						
	Protector	10	-						
	Standard	5	5						
DAGE	With NSK K1	12	12						
RA25	Double seal	10	9						
	Protector	10	9						
	Standard	5	6						
DA 20	With NSK K1	14	15						
RA30	Double seal	12	11						
	Protector	12	11						
	Standard	5	6						
DAOF	With NSK K1	14	15						
RA35	Double seal	12	11						
	Protector	12	11						
	Standard	8	17						
RA45	With NSK K1	18	21.5						
KA45	Double seal	14	17						
	Protector	14	17						
	Standard	8	17						
DAFE	With NSK K1	18	21.5						
RA55	Double seal	14	17						
	Protector	14	17						
	Standard	8	17						
RA65	With NSK K1	20	20						
COAN	Double seal	14	17						

14

17

Protector

Fig. 16 Rail cover

Table 12 Seal friction per roller slide (maximum value)

								Unit: N
Series Size	15	20	25	30	35	45	55	65
RA	4	5.5	5	5	6	8	8	14

NSK

(2) NSK K1[™] lubrication unit

Table 12 shows the dimension of linear guides equipped with the NSK K1 lubrication unit.

Table 13 Unit: mm									
Model No.	Roller slide length	Roller slide model	Standard roller slide length	With two NSK K1	Thickness of NSK K1 V1	Protruding area of the grease fitting N			
RA15	Standard	AN, AL, EM	70	79	4.5	(3)			
na 15	Long	BN, BL, GM	85.4	94.4	4.5	(3)			
RA20	Standard	AN, EM	86.5	95.5	4.5	(3)			
RA20	Long	BN, GM	106.3	115.3	4.5	(3)			
RA25	Standard	AN, AL, EM	97.5	107.5	5	(11)			
nA25	Long	BN, BL, GM	115.5	125.5	D	(11)			
RA30	Standard	AN, AL, EM	110.8	122.8	6	(11)			
nA30	Long	BN, BL, GM	135.4	147.4	0	(11)			
RA35	Standard	AN, AL, EM	123.8	136.8	6.5	(11)			
nA35	Long	BN, BL, GM	152	165	0.0	(11)			
DAAE	Standard	AN, AL, EM	154	168	7	(1.4)			
RA45	Long	BN, BL, GM	190	204	/	(14)			
RA55	Standard	AN, AL, EM	184	198	7	(1.4)			
nA55	Long	BN, BL, GM	234	248	1	(14)			
DAGE	Standard	AN, EM	228.4	243.4	7 5	(14)			
RA65	Long	BN, GM	302.5	317.5	7.5	(14)			

Note: Roller slide length equipped with NSK K1 = (Standard roller slide length) + (Thickness of NSK K1 Case Unit × Number of NSK K1 Case Unit)

(3) Double seal and protector

For RA Series, double seal and protector can be installed only before shipping from the factory. **Table 14** shows the increased thickness when end seal and protector are installed.

Table 14						
Thickness of end seal	Thickness of protector					
V ₃	V_4					
3	2.7					
3	3.3					
3.2	3.3					
3.4	3.6					
3.4	3.6					
4	4.2					
4	4.2					
5	5.5					
	V ₃ 3 3.2 3.4 3.4 4 4					

Fig. 19

(4) Rail cover

When the rail cover is used, use the cover bracket to secure the rail cover. **Fig.20** shows the dimensions for the cover bracket. The required room at the end of the rail is:

- Inside: 10.5 mm or less
- Outside: 4 mm or less (Common to the models of RA25 to RA65)
- Please confirm the interference with your machine at the stroke end.
- Machine stroke
- · Room for the end of the rail

The height of the rail with the rail cover is shown in **Table 15**.

Table 15 Height of rails equipped with rail cover

		Unit: mm
Model No.	Standard height H ₁	Cover installation
RA25	24	24.25
RA30	28	28.25
RA35	31	31.25
RA45	38	38.3
RA55	43.5	43.8
RA65	55	55.3

Fig. 18 Protector

Fig. 20 End configuration of rail equipped with the rail cover

(5) Cap to plug the rail mounting bolt hole

Table 16 Caps to plug rail bolt hole

Model No.	Bolt to	Сар	Quantity	
woder wo.	secure rail	reference No.	/case	
RA15	M4	LG-CAP/M4	20	
RA20	M5	LG-CAP/M5	20	
RA25	M6	LG-CAP/M6	20	
RA30, RA35	M8	LG-CAP/M8	20	
RA45	M12	LG-CAP/M12	20	
RA55	M14	LG-CAP/M14	20	
RA65	M16	LG-CAP/M16	20	

RA Series

8. Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

(2) Reference number for random-matching type

able 1	7 Material/surface treatment code
Code	Description
С	Special high carbon steel (NSK standard)
D	Special high carbon steel with surface treatment
Ζ	Other, special

Table 18 Accuracy code

Accuracy	Standard (Without NSK K1)	With NSK K1
Ultra precision grade	P3	К3
Super precision grade	P4	K4
High precision grade	P5	K5
Precision grade	P6	K6
High precision grade (Random-matching type)	РН	КН

Note: Refer to pages A38 for NSK K1 lubrication unit.

9. Dynamic friction

- Dynamic friction standard per ball slide is shown in table 19.
- The dynamic function under the actual situation, AS2 grease, NSK standard grease, impregnated into standard specification that two end seals, inner seal and bottom seal. Inner seals for models of RA15 and RA20 are available as option.
- Dynamic friction changed with the grease.

Table	Table 19 Dynamite Friction								
	-	Unit: N							
Model No.	High-load type	Super-high-load type							
RA15 21 24									
RA20 22 28									
RA25 27 34									
RA30	33	42							
RA35	42	53							
RA45	56	69							
RA55 80 95									
RA65 120 138									
Note: Table 19 is standard.									

The reference number coding for the assembly of random-matching type is the same as that of the preloaded assembly. However, the applicable preload codes are "slight preload Z" and "medium preload H". (See page A255.)

Material/surface treatment code (See Table 17.)

Rail shape code: L

L: Standard

A263

*Butting rail specification

N: Non-butting. L: Butting specification

*Please consult with NSK for butting rail specification.

10. Dimensions **RA-AN (High-load type / Standard) RA-BN (Super-high-load type / Long)**

	A	ssemb	ly		Ball slide											
Model No.	Height			Width	Length	ength Mounting hole						Grease	fittin	g	Width	Height
would no.																
	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	Κ	Т	Hole size	<i>T</i> ₁	Ν	W_1	H_1
RA15AN RA15BN	28	4	9.5	34	70 85.4	26	26	M4×0.7×6	44.8 60.2	24	8	ø 3	8	3	15	16.3
RA20AN RA20BN	30	5	12	44	86.5 106.3	32	36 50	M5×0.8×6	57.5 77.3	25	12	ø 3	4	3	20	20.8
RA25AN RA25BN	40	5	12.5	48	97.5 115.5	35	35 50	M6×1×9	65.5 83.5	35	12	M6×0.75	10	11	23	24
RA30AN RA30BN	45	6.5	16	60	110.8 135.4	40	40 60	M8×1.25×11	74 98.6	38.5	14	M6×0.75	10	11	28	28
RA35AN RA35BN	55	6.5	18	70	123.8 152	50	50 72	M8×1.25×12	83.2 111.4	48.5	15	M6×0.75	15	11	34	31
RA45AN RA45BN	70	8	20.5	86	154 190	60	60 80	M10×1.5×17	105.4 141.4	62	17	Rc1/8	20	14	45	38
RA55AN RA55BN	80	9	23.5		184 234	75	75 95	M12×1.75×18	128 178	71	18	Rc1/8	21	14	53	43.5
RA65AN RA65BN	90	13	31.5	126	228.4 302.5	76	70 120	M16×2×20	155.4 229.5	77	22	Rc1/8	19	14	63	55

Notes: 1) Select either one of two F dimensions, the standard or the parenthesized semi-standard dimension, for the pitch of rail fixing bolt holes. If not specified, the standard dimension of F is applied

6-M×ℓ

AN and BN types

Reference number for rail of random-matching type R1A35 1000 L C N -** PH Z Rail

												-	-
Rail						Bas	sic load ra	ating				Weigł	nt
Pitch	Mounting	G	Maximum	³⁾ Dyn	amic	Static		Static	moment	(N·m)		Ball	Rail
	bolt hole		length	[50km]	[100km]	С о	M _{RO}	M	PO	M	YO	slide	
F	$d \times D \times h$	(reference	L _{0max}	$C_{50}(N)$	$C_{100}(N)$	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
60 (30)	4.5×7.5×5.3	20	2 000	12 600 16 000	10 300 13 000	27 500 37 000	260 350	210 375	1 320 2 130	210 375	1 320 2 130	0.21	1.6
60 (30)	6×9.5×8.5	20	3 000	23 600 29 500	19 200 24 000	52 500 70 000	665 890	505 900	3 100 5 000	505 900	3 100 5 000	0.38	
30 (60)	7×11×9	20	3 900	36 000 43 500	29 200 35 400	72 700 92 900	970 1 240	760 1 240	4 850 7 200	760 1 240	4 850 7 200	0.60	3.4
40 (80)	9×14×12	20	3 900	47 800 58 500	38 900 47 600	93 500 121 000	1 670 2 170	1 140 1 950	7 100 11 500	1 140 1 950	7 100	1.0 1.3	4.9
40 (80)	9×14×12	20	3 900	65 500 82 900	53 300 67 400	129 000 175 000	2 810 3 810	1 800 3 250	11 000 17 800	1 800 3 250	11 000 17 800	1.6 2.1	6.8
52.5 (105)	14×20×17	22.5	3 650	114 000 143 000	92 800 116 000	229 000 305 000	6 180 8 240	4 080 7 150	24 000 39 000	4 080 7 150	24 000 39 000		10.9
60 (120)	16×23×20	30	3 600	159 000 207 000	129 000 168 000	330 000 462 000	10 200	7 060	41 000 72 000	7 060	41 000 72 000	4.9 6.7	14.6
75 (150)	18×26×22	35	3 600	259 000 355 000	210 000 288 000	504 000 756 000	19 200 28 700	12 700 28 600	78 500 153 000	12 700 28 600	78 500 153 000		22.0
	random-match	Dina tu	Ino is avr									=	

2) The random-matching type is available for the models of RA25 to RA65.

3) The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

 $C_{\rm so;}$ the basic dynamic load rating for 50 km rated fatigue life $C_{\rm ruo;}$ the basic dynamic load rating for 100 km rated fatigue life

RA Series

NSK

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

RA-AL (High-load type / Standard) RA-BL (Super-high-load type / Long)

	A	ssemb	bly		Ball slide											
Model No.	Height			Width	Length		M	ounting hole				Grease	fittin	g	Width	Height
Model No.																
	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	K	Т	Hole size	<i>T</i> ₁	Ν	W_1	H_1
RA15AL RA15BL	24	4	9.5	34	70 85.4	26	26	M4×0.7×5.5	44.8 60.2	20	8	ø 3	4	3	15	16.3
RA25AL RA25BL	36	5	12.5	48	97.5 115.5	35	35 50	M6×1×8	65.5 83.5	31	12	M6×0.75	6	11	23	24
RA30AL RA30BL	42	6.5	16	60	110.8 135.4	40	40 60	M8×1.25×11	74 98.6	35.5	14	M6×0.75	7	11	28	28
RA35AL RA35BL	48	6.5	18	70	123.8 152	50	12	M8×1.25×12	83.2 111.4	41.5	15	M6×0.75	8	11	34	31
RA45AL RA45BL	60	8	20.5	86	154 190	60	80	M10×1.5×16	105.4 141.4	52	17	Rc1/8	10	14	45	38
RA55AL RA55BL	70	9	23.5	100	184 234	75	75 95	M12×1.75×18	128 178	61	18	Rc1/8	11	14	53	43.5

Notes: 1) Select either one of two F dimensions, the standard or the parenthesized semi-standard dimension, for the pitch of rail fixing bolt holes. If not specified, the standard dimension of F is applied

Reference number for roller slide of random-matching type

Reference number for rail of random-matching type R1A35 1000 L C N -** PH Z Rail

<u></u>	
Random-matching rail series code	Preload code: Z
R1A: RA Series random-matching rail	Z: Common for slight and medium
Size	preload (See A255.) Accuracy code
Rail length (mm)	PH: High-precision grade random-matching type.
nair length (mm)	Design serial number
Rail shape code: L	Added to the reference number.
L: Standard	*Butting rail specification
Material/surface treatment code (See Table 17.)	N: Non-butting. L: Butting specification
	*Please consult with NSK for butting rail specification.

 W_1

Unit: mm

Rail						Bas	c load ra	ting				Weigł	٦t
Pitch	Mounting	G	Maximum	³⁾ Dyna	amic	Static		Static	moment	(N·m)		Ball	Rail
	bolt hole		length	[50km]	[100km]	С о	M _{RO}	M	PO	M _{YO}		slide	
F	$d \times D \times h$	(reference)	$L_{0 \max}$	$C_{50}(N)$	$C_{100}(N)$	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
60 (30)	4.5×7.5×5.3	20	2 000	12 600 16 000	10 300 13 000	27 500 37 000	260 350	210 375	1 320 2 130	210 375	1 320 2 130	0.17	1.6
30 (60)	7×11×9	20	3 900	36 000 43 500	29 200 35 400	72 700 92 900	970 1 240	760 1 240	4 850 7 200	760 1 240	4 850 7 200	0.45 0.80	3.4
40 (80)	9×14×12	20	3 900	47 800 58 500	38 900 47 600	93 500 121 000	1 670 2 170	1 140 1 950	7 100 11 500	1 140 1 950	7 100	0.85	4.9
40 (80)	9×14×12	20	3 900	65 500 82 900	53 300 67 400	129 000 175 000	2 810 3 810	1 800 3 250	11 000 17 800	1 800 3 250	11 000 17 800	1.2 1.7	6.8
52.5 (105)	14×20×17	22.5	3 650	114 000 143 000	92 800 116 000	229 000 305 000	6 180 8 240	4 080 7 150	24 000 39 000	4 080 7 150	24 000 39 000	2.5 3.4	10.9
60 (120)	16×23×20	30	3 600	159 000 207 000	129 000 168 000	330 000 462 000	10 200 14 300	7 060 13 600	41 000 72 000	7 060 13 600	41 000 72 000	4.1 5.7	14.6

The random-matching type is available for the models of RA25 to RA55.

3) The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

 C_{50} ; the basic dynamic load rating for 50 km rated fatigue life

 C_{100} ; the basic dynamic load rating for 100 km rated fatigue life

NSK

RA-EM (High-load type / Standard) RA-GM (Super-high-load type / Long)

Notes: 1) Select either one of two F dimensions, the standard or the parenthesized semi-standard dimension, for the pitch of rail fixing bolt holes. If not specified, the standard dimension of F is applied

Reference number for roller slide of random-matching type RAA 35 EM PH H -F Ball slide

 ϕQ_2

(R)

EM type

 $4-M \times \ell_1$

GM type

Reference number for rail of random-matching type R1A35 1000 L C N -** PH Z Rail

S

				F								Ur	nit: mm
			Rail					Basic loa	ad ratin	ıg		We	eight
Width	Height	Pitch	Mounting	G	Maximum	³⁾ Dyn	amic	Static	S	Static mome	nt (N·m)	Ball	Rail
			bolt hole		length	[50km]	[100km]	<i>C</i> ₀	MRO	MPO	M _{YO}	slide	
W_1	H_1	F	$d \times D \times h$	(reference)	$L_{0 \max}$	$C_{50}(N)$	C ₁₀₀ (N)	(N)		One slide Two slides	One slide Two slides	(kg)	(kg/m)
15	16.3	60 (30)	4.5×7.5×5.3	20	2 000	12 600 16 000	10 300 13 000	27 500 37 000	260 350			0.21 0.28	1.6
20	20.8	60 (30)	6×9.5×8.5	20	3 000	23 600 29 500	19 200 24 000	52 500 70 000	665 890			0.45 0.65	2.6
23	24	30 (60)	7×11×9	20	3 900	36 000 43 500	29 200 35 400	72 700 92 900	970 1 240			0.80 1.1	3.4
28	28	40 (80)	9×14×12	20	3 900	47 800 58 500	38 900 47 600	93 500 121 000	1 670 2 170	1 950 11 500	1 950 11 500		4.9
34	31	40 (80)	9×14×12	20	3 900	65 500 82 900	53 300 67 400	129 000 175 000	2 810 3 810	3 250 17 800	3 250 17 800		6.8
45	38	52.5 (105)	14×20×17	22.5	3 650	114 000 143 000	92 800 116 000	229 000 305 000	6 180 8 240	7 150 39 000	7 150 39 000		10.9
53	43.5	60 (120)	16×23×20	30	3 600	159 000 207 000	129 000 168 000	330 000 462 000	10 200 14 300		7 060 41 000 13 600 72 000		14.6
63	55	75 (150)	18×26×22	35	3 600	259 000 355 000	210 000 288 000				12 700 78 500 28 600 153 000		22.0

2) The random-matching type is available for the models of RA25 to RA65.

3) The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

 C_{50} ; the basic dynamic load rating for 50 km rated fatigue life

 C_{100} ; the basic dynamic load rating for 100 km rated fatigue life

NSK

A269

N

- 2

1/

14

6

8

A-5-3.2 LA Series

1. Features (1) High rigidity and high load carrying capacity

A set of three ball grooves is made on both sides of ball slide and a rail. This contributes to the increased rigidity and load carrying capacity. The top and bottom groove are formed in the circular arc with a closer radius of ball, which ensures great rigidity and load carrying capacity. With the Gothic arch center groove, rigidity and load carrying capacity are further increased.

(2) Moderate friction

A well-balanced combination of 2-point contacts at the top and bottom grooves and 4 points contact at the center groove provides moderate friction while ensuring rigidity by appropriate preload.

(3) Four-way equal load distribution

The contact angle of balls is set at 45 degrees in all grooves, thereby dispersing the load equally to four rows irrespective of load direction. This realizes equal rigidity and load carrying capacity in vertical and lateral directions and provides well-balanced design.

(4) Strong against shock load

Load from any direction, vertical and lateral, is received by four ball rows at all times. The number of the ball rows which receive the load is larger than in other linear guides, making this series stronger against shock load.

(5) High accuracy

As showing in **Fig. 4**, fixing the measuring rollers is easy thanks to the Gothic arch groove of the central ball groove. This benefits an accurate and measuring of ball groove for a highly precise and stable manufacturing.

(6) The dust protection design

The rail's cross section is designed as simple as possible, thereby improving the sealing efficiency combined with the enhanced sealing function. In addition, optional inner seals are available.

Fig. 1 LA Series

Fig. 2 Super rigidity design

Fig. 3 Rail grinding

Fig. 4 Measuring groove accuracy

3. Accuracy and preload

(1) Running parallelism of ball slide

Unit: µm

NSK

	Р	reloaded assembly (r	not random matching	g)
Rail length (mm) over or less	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6
- 50	2	2	2	4.5
50 - 80	2	2	3	5
80 - 125	2	2	3.5	5.5
125 – 200	2	2	4	6
200 - 250	2	2.5	5	7
250 – 315	2	2.5	5	8
315 - 400	2	3	6	9
400 - 500	2	3	6	10
500 - 630	2	3.5	7	12
630 - 800	2	4.5	8	14
800 – 1 000	2.5	5	9	16
1 000 – 1 250	3	6	10	17
1 250 – 1 600	4	7	11	19
1 600 – 2 000	4.5	8	13	21
2 000 – 2 500	5	10	15	22
2 500 – 3 150	6	11	17	25
3 150 – 4 000	9	16	23	30

Table 1

(2) Accuracy standard

The LA Series has four accuracy grades: Ultra precision P3, Super precision P4, High precision P5, and Precision grade P6.

	Table 2										
Accuracy grade Characteristics	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6							
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 3	±10 5	±20 7	±40 15							
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 3	±15 7	±25 10	±50 20							
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	e A Shown in Table 1 and Fig. 5										

(3) Assembled accuracy

4. Preload and rigidity

Table 3 shows preload and rigidity of LA Series.

The LA Series has two types of preload specification: Medium preload Z3 and Heavy preload Z4.

	Table 3										
	Model No.	Preloa	ad (N)	Rigidity	(N/µm)						
	wodel No.	Medium preload Z3	Heavy preload Z4	Medium preload Z3	Heavy preload Z4						
	LA25 AL, AN, EL, FL	1 670	2 110	475	550						
/pe	LA30 AL, AN, EL, FL	2 450	3 140	705	835						
ad ty	LA35 AL, AN, EL, FL	3 450	4 300	825	970						
High-load type	LA45 AL, AN, EL, FL	5 050	6 350	1 100	1 240						
Hig	LA55 AL, AN, EL, FL	8 100	10 200	1 400	1 540						
	LA65 AN, EL, FL	13 800	18 800	1 730	2 030						
be	LA25 BL, BN, GL, HL	2 260	2 840	700	820						
d ty	LA30 BL, BN, GL, HL	3 250	4 050	1 000	1 180						
I-loa	LA35 BL, BN, GL, HL	4 450	5 650	1 200	1 400						
high	LA45 BL, BN, GL, HL	6 150	7 750	1 450	1 640						
uper-high-load type	LA55 BL, BN, GL, HL	9 550	12 100	1 840	2 020						
Su	LA65 BN, GL, HL	18 000	24 400	2 450	2 840						

NSK

4. Maximum rail length

Table 4 shows the limitations of rail length. However, the limitations vary by accuracy grades.

Table 4 Length limitations of rails											
Series Size 25 30 35 45 55 6											
LA	3 960	4 000	4 000	3 990	3 960	3 900					

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

			Table 5				Unit: µm			
Value	Preload			Mode	el No.					
value	Fleidau	LA25	LA30	LA35	LA45	LA55	LA65			
Permissible values of	Z3	15	15 17 20 25 30							
parallelism in two rails <i>e</i> 1	Z4	13	13 15 17 20 25							
Permissible values of	Z3, Z4		185 μm/500 mm							
parallelism (height) in two rails e_2	ZS, Z4			165 µm)	500 mm					

(2) Shoulder height of the mounting surface and corner radius r

			Unit: mm	
Model No.	Corner radiu	s (maximum)	Shoulde	r height
would wo.	ľ _a	<i>r</i> _b	H	H"
LA25	0.5	0.5	5	5
LA30	0.5	0.5	6	6
LA35	0.5	0.5	6	6
LA45	0.7	0.7	8	8
LA55	0.7	0.7	10	10
LA65	1	1	11	11

slide datum surface

6. Lubrication components

Refer to pages A38 and D13 for the lubrication of linear guides.

(1) Types of lubrication accessories

Fig. 10 and Table 7 show grease fittings and tube fittings.

(2) Mounting position of lubrication accessories

- The standard position of grease fittings is the end face of ball slide. We mount them on a side of end cap for an option. (**Fig. 11**).
- Please consult NSK for installation of grease or tube fittings to the ball slide body or side of end cap.
- When using a piping unit with thread of M6 \times 1, you require a connector to connect to a grease fitting mounting hole with M6 \times 0.75. The connector is available from NSK.

	1	Table 7	Unit: mm		
Model No.	Dust proof	Grease fitting	Tube fitting		
	specification	Thread body length L	Thread body length L		
	Standard	5	5		
LA25	With NSK K1	14	12		
LAZS	Double seal	10	9		
	Protector	10	9		
	Standard	5	6		
LA30	With NSK K1	14	13		
LASU	Double seal	12	11		
	Protector	12	11		
	Standard	5	6		
LA35	With NSK K1	14	13		
LASS	Double seal	12	11		
	Protector	12	11		
	Standard	8	17		
LA45	With NSK K1	18	21.5		
LA45	Double seal	14	17		
	Protector	14	17		
	Standard	8	17		
LA55	With NSK K1	18	21.5		
LASS	Double seal	14	17		
	Protector	14	17		
	Standard	8	17		
LA65	With NSK K1	22	25.5		
LA05	Double seal	16	19		
	Protector	16	17		

Grease fitting

Fig. 10 Grease fitting and tube fitting

Fig. 11 Mounting position of lubrication accessories

7. Dust-proof components

(1) Standard Specification

The LA Series can be readily used as they have a dust protection means for normal conditions. As the standard equipment, the ball slides have an end seal on both ends, and bottom seals at the bottom.

Fig. 12

Table 8 Seal friction per ball slide (maximum value)

						Onit. N
Size	25	30	35	45	55	65
LA	11	11	12	17	17	23

(2) NSK K1[™] lubrication unit

Table 9 shows the dimension of linear guides equipped with the NSK K1 lubrication unit.

			Table	9			Unit: mm
Model No.	Ball slide length	Ball slide model	Standard ball slide length	Ball slide length installed with two NSK K1 L	Per NSK K1 thickness V1	Protective cover thickness V ₂	Protruding area of the grease fitting N
LA25	Standard	AL, AN, EL, FL	79.8	91.8	5.0	1.0	(14)
LAZS	Long	BL, BN, GL, HL	107.8	119.8	5.0	1.0	(14)
LA30	Standard	AL, AN, EL, FL	100.2	113.2	5.5	1.0	(14)
LASU	Long	BL, BN, GL, HL	126.2	139.2	5.5	1.0	(14)
LA35	Standard	AL, AN, EL, FL	110.6	123.6	5.5	1.0	(14)
LASS	Long	BL, BN, GL, HL	144.6	157.6	5.5	1.0	(14)
LA45	Standard	AL, AN, EL, FL	141.4	156.4	6.5	1.0	(15)
LA45	Long	BL, BN, GL, HL	173.4	188.4	0.5	1.0	(15)
LA55	Standard	AL, AN, EL, FL	165.4	180.4	6.5	1.0	(15)
LASS	Long	BL, BN, GL, HL	203.4	218.4 6.5		1.0	(15)
LA65	Standard	AN, EL, FL	3		8.0	1.0	(16)
LA05	Long	BN, GL, HL			0.0	1.0	(16)

Note: Ball slide length equipped with NSK K1 = (Standard ball slide length) + (Thickness of NSK K1, V_1 × Number of NSK K1) + (Thickness of the protective cover $V_2 \times 2$)

.A Series

(3) Double seal and protector

For the LA Series, a double seal and a protector can be installed only before shipping from the factory. Please consult with NSK when the double seal and the protectors are required.

Table 10 shows the increased thickness of V3 and V₄ when end seals and protectors are installed (Fig. 15).

	Table 10	Unit: mm
Model No.	Thickness	Thickness
woder no.	of end seal: $V_{\scriptscriptstyle 3}$	of protector: V_4
LA25	3.2	3.6
LA30	4.4	4.2
LA35	4.4	4.2
LA45	5.5	4.9
LA55	5.5	4.9
LA65	6.5	5.5

(4) Cap to plug the rail mounting bolt hole

Table 11 Caps to plug rail bolt hole

Madal Na	Bolt to	Сар	Quantity
Model No.	secure rail	reference No.	/case
LA25	M6	LG-CAP/M6	20
LA30, LA35	M8	LG-CAP/M8	20
LA45	M12	LG-CAP/M12	20
LA55	M14	LG-CAP/M14	20
LA65	M16	LG-CAP/M16	20

(5) Bellows

Make tap holes to the rail end face to fix the bellows mounting plate.

NSK processes tap holes to the rail end face

when ordered with a linear guide.

Fig. 13 Double seal

Fig. 14 Protector

Fig. 15

Dimension tables of bellows LA Series

Table 12 Dimensions of bellows

									011121111
Model No.	Н	h_1	E	W	Р	а	b	Length of BL	Tap (M) × depth
JAA25L	35	29.5	5.5	55	12	12	13.8	17	M3 × 5
JAA25N	39	33.5	5.5	61	15	12	13.8	17	M3 × 5
JAA30L	41	33.5	7.5	60	12	14	17.5	17	$M4 \times 6$
JAA30N	44	36.5	7.5	66	15	14	17.5	17	$M4 \times 6$
JAA35L	47	39.5	7.5	72	15	15	18.8	17	$M4 \times 6$
JAA35N	54	46.5	7.5	82	20	15	18.8	17	$M4 \times 6$
JAA45L	59	49	10	93	20	25	22.5	17	$M5 \times 8$
JAA45N	69	59	10	113	30	25	22.5	17	$M5 \times 8$
JAA55L	69	57	12	101	20	35	27.1	17	$M5 \times 8$
JAA55N	79	67	12	121	30	35	27.1	17	$M5 \times 8$
JAA65N	89	75	14	131	30	40	33.3	17	M6 × 12

Table 13 Numbers of folds (BL) and length of bellows

Unit: mm 16 Length of BL 2 6 8 10 12 14 18 20 4 Model No. Type 1 min 34 68 102 136 170 204 238 272 306 340 134 536 670 938 1 072 Stroke 268 402 804 1 206 1 340 JAA25L Low type 504 840 1 008 1 176 1 344 Lmax 168 336 672 1 512 1 680 Stroke 176 352 528 704 880 1 056 1 232 1 408 1 584 1 760 JAA25N High type Lmax 210 420 630 840 1 050 1 260 1 470 1 680 1 890 2 100 134 268 402 536 670 804 938 1 072 1 206 1 340 Stroke Low type JAA30L Lmax 168 336 504 672 840 1 008 1 176 1 344 1 512 1 680 Stroke 176 352 528 704 880 1 056 1 232 1 408 1 584 760 High type JAA30N Lmax 210 420 630 840 1 050 1 260 1 470 1 680 1 890 2 1 0 0 Stroke 352 528 880 1 056 1 232 1 408 176 704 1 584 1 760 JAA35L Low type Lmax 210 420 630 840 1 050 1 260 1 470 1 680 1 890 2 1 0 0 246 492 984 1 230 1 476 1 722 1 968 Stroke 738 2 2 1 4 2 460 High type JAA35N 560 840 1 1 2 0 1 400 1 680 1 960 2 2 4 0 2 520 Lmax 280 2 800 492 984 Stroke 246 738 1 2 3 0 1 476 1 722 1 968 2 2 1 4 2 460 JAA45L Low type 1 1 2 0 Lmax 280 560 840 1 400 1 680 1 960 2 2 4 0 2 520 2 800 Stroke 386 772 158 1 544 1 930 2 316 2 702 3 088 3 474 3 860 High type JAA45N 2 100 Lmax 420 840 260 1 680 2 520 2 940 3 360 3 780 4 200 Stroke 246 492 738 984 1 2 3 0 1 476 1 722 1 968 2 2 1 4 2 460 JAA55L Low type Lmax 280 560 840 1 1 2 0 1 400 1 680 1 960 2 2 4 0 2 520 2 800 Stroke 386 772 1 158 1 544 1 930 2 316 2 702 3 088 3 474 3 860 High type JAA55N 3 360 420 840 260 1 680 2 1 0 0 2 520 2 940 3 780 4 200 Lmax Low/high Stroke 386 772 1 158 1 544 1 930 2 3 1 6 2 702 3 088 3 474 3 860 JAA65N* type 420 840 1 260 1 680 2 100 2 520 2 940 3 360 3 780 4 200 Lmax

* Bellows for LA65 is for both low and high types.

Note: The values of an odd number BL quantity (3, 5, 7, ...) can be obtained by adding two values of the even number BL on the both sides, then by dividing the sum by 2.

Unit: mm

LA Series

8. Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

Table 14 Material/surface treatment code

Code	Description
С	Special high carbon steel (NSK standard)
D	Special high carbon steel with surface treatment
Z	Other, special

Ta	ble 15 Accuracy code	
Accuracy	Standard (Without NSK K1)	With NSK K1
Ultra precision grade	P3	К3
Super precision grade	P4	K4
High precision grade	P5	K5
Precision grade	P6	K6

Note: Refer to pages A38 for NSK K1 lubrication unit.

LA-AL (High-load type / Standard) LA-BL (Super-high-load type / Long)

Front view of AL and BL types

Linit

Rail						Bacio lo	ad ratin	a				-	nit: mn ight
Pitch	Manuations	G	Max.	²⁾ Dvn	Basic load rating ² Dynamic Static Static moment (N·m				t (N.m)			Ŭ	
PIICH	Mounting bolt hole	G	length	[50km]	[100km]	C	M _{BO}		PO	M		Ball slide	Rail
F	$d \times D \times h$	(reference)	L _{omax}	$C_{50}(N)$	$C_{100}(N)$	(N)	RU				Two slides	(kg)	(kg/m
60	7×11×9	20	3 960	30 000	23 900	50 000	290	410	2 490	410	2 490	0.5	3.7
00	721123	20	3 900	40 500	32 500	77 000	445	935	5 000	935	5 000	0.8	5.7
				47 000	37 000	77 500	535	820	4 800	820	4 800	0.8	
80	9×14×12	20	4 000	58 000	46 000	105 000	725	1 470	8 050	1 470	8 050	1.2	5.8
80	9×14×12	20	4 000	61 500	49 000	98 000	845	1 130	6 750	1 130	6 750	1.3	7.7
80	3×14×12	20	4 000	80 500	64 000	143 000	1 240	2 330	12 500	2 330	12 500	1.6	/./
				91 000	72 000	148 000	1 840	2 210	12 900	2 210	12 900	2.5	
105	14×20×17	22.5	3 990	111 000	88 000	197 000	2 460	3 850	20 600	3 850	20 600	3.2	12.0
				139 000	111 000	215 000	3 150	3 800	22 000	3 800	22 000	3.9	
120	16×23×20	30	3 960	172 000	137 000	292 000	4 250	6 800	36 000	6 800	36 000	5.1	17.2

2) The basic load rating	comply with the ISO standa	ard. (ISO 14728-1, 14728-2)

 $C_{\rm 50}$; the basic dynamic load rating for 50 km rated fatigue life

 C_{100} ; the basic dynamic load rating for 100 km rated fatigue life

	A	ssemb	ly					Ball slid	le							
Model No.	Height			Width	Length		Mour	nting hole	-			Grease	fitting	9	Width	Height
	Н	Ε	W 2	W	L	В	J	$M \times \text{pitch} \times \ell$	<i>L</i> ₁	к	Т	Hole size	<i>T</i> ₁	N	W_1	H_1
LA25AL	36	5.5	12.5	48	79.8	35	35	M6×1×7	58	30.5	8	M6×0.75	6	11	23	22
LA25BL					107.8		50		86							
LA30AL					100.2		40		72							
LA30BL	42	7.5	16	60	126.2	40	60	M8×1.25×10	98	34.5	11	M6×0.75	6.5	11	28	28
LA35AL					110.6		50		80							
LA35BL	48	7.5	18	70	144.6	50	72	M8×1.25×10	114	40.5	15	M6×0.75	8	11	34	30.8
LA45AL					141.4		60		105							
LA45BL	60	10	20.5	86	173.4	60	80	M10×1.5×16	137	50	17	Rc1/8	10	13	45	36
LA55AL					165.4		75		126							
LA55BL	70	12	23.5	100	203.4	75	95	M12 × 1.75×16	164	58	18	Rc1/8	11	13	53	43.2

Notes: 1) LA Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail

LA-AN (High-load type / Standard) LA-BN (Super-high-load type / Long)

Assembly

Height

Width Length

Front view of AN and BN types

Grease fitting

Width Height

												Ur	nit: mm
Rail						Basic Ic	ad ratir	ng				We	eight
Pitch		G	Max.	²⁾ Dyn	amic	Static		Static r	momen	it (N∙m)		Ball	Rail
	bolt hole		length	[50km]	[100km]	С о	М _{во}	MPO		M	YO	slide	
F	$d \times D \times h$	(reference)	L _{Omax}	$C_{50}(N)$	$C_{100}(N)$	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
60	7×11×9	20	3 960	30 000	23 900	50 000	290	410	2 490	410	2 490	0.6	3.7
		20	0 000	40 500	32 500	77 000	445	935	5 000	935	5 000	0.9	0.17
80	9×14×12	20	4 000	47 000	37 000	77 500	535	820	4 800	820	4 800	0.9	5.8
00	9x14x12	20	4 000	58 000	46 000	105 000	725	1 470	8 050	1 470	8 050	1.3	5.0
				61 500	49 000	98 000	845	1 130	6 750	1 130	6 750	1.5	
80	9×14×12	20	4 000	80 500	64 000	143 000	1 240	2 330	12 500	2 330	12 500	2.1	7.7
105	14×20×17	22 5	3 990	91 000	72 000	148 000	1 840	2 210	12 900	2 210	12 900	3.0	12.0
105	14x20x17	22.0	3 990	111 000	88 000	197 000	2 460	3 850	20 600	3 850	20 600	3.9	12.0
100	10.00.00	30	2.000	139 000	111 000	215 000	3 150	3 800	22 000	3 800	22 000	4.7	17.0
120	120 16×23×20	30	3 960	172 000	137 000	292 000	4 250	6 800	36 000	6 800	36 000	6.1	17.2
150	10,20,200	25	3 900	260 000	206 000	420 000	7 300	9 050	51 000	9 050	51 000	7.7	25.0
150	150 18×26×22 ;	8×26×22 35		340 000	269 000	615 000	10 700	18 700	95 000	18 700	95 000	10.8	25.9

Mod	lel No.	Height			vviatn	Length		Ivioui		-			Glease	nung	1	vviatri	Height
		Н	Е	W ₂	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	к	Т	Hole size	<i>T</i> ₁	N	W_1	H_1
	25AN 25BN	40	5.5	12.5	48	79.8	35	35 50	M6×1×10		34.5	12	M6×0.75	10	11	23	22
								40		86							
	30AN 30BN	45	7.5	16	60	100.2 126.2	40	40 60	M8×1.25×11	98	37.5	14	M6×0.75	9.5	11	28	28
	35AN 35BN	55	7.5	18	70	110.6	50	50 72	M8×1.25×12	80	47.5	15	M6×0.75	15	11	34	30.8
LA	3281/					144.0		12		114							
LA4	45AN	70	10	20.5	86	141.4	60	60	M10×1.5×16	105	60	17	Rc1/8	20	13	45	36
LA4	45BN	, 0		2010		173.4	00	80		137		.,		20			
LAS	55AN					165.4		75		126							
LA	55BN	80	12	23.5	100	203.4	75	95	M12×1.75×18	164	68	18	Rc1/8	21	13	53	43.2
LAG	65AN	00		01 5	100	196.2	70	70	M40 0 40	147		00	D 1/0	10	10	00	
LA	65BN	90	14	31.5	126	256.2	76	120	M16×2×19	207	76	22	Rc1/8	19	13	63	55

Ball slide

Mounting hole

Notes: 1) LA Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.

2) The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

 $C_{\rm 50}$; the basic dynamic load rating for 50 km rated fatigue life

 C_{100} ; the basic dynamic load rating for 100 km rated fatigue life

LA-EL (High-load type / Standard) LA-GL (Super-high-load type / Long)

Front view of EL and GL types

Unit: mm

												Un	it: mm
Rail						Basic lo	oad ratir	ng				We	ight
Pitch	Mounting	G	Max.	²⁾ Dyn	amic	Static		Static I	momen	t (N·m)		Ball	Rail
	bolt hole		length	[50km]	[100km]	С о	M _{RO}	M _{PO}		M	YO	slide	
F	$d \times D \times h$	(reference)	L_{0max}	$C_{50}(N)$	C ₁₀₀ (N)	(N)	One slide		Two slides One slide		Two slides	(kg)	(kg/m)
60	7×11×9	20	3 960	30 000	23 900	50 000	290	410	2 490	410	2 490	0.8	3.7
00		20	0 000	40 500	32 500	77 000	445	935	5 000	935	5 000	1.1	0.7
80	9×14×12	20	4 000	47 000	37 000	77 500	535	820	4 800	820	4 800	1.3	5.8
00	UNTINIZ	20	1 000	58 000	46 000	105 000	725	1 470	8 050	1 470	8 050	1.8	0.0
80	9×14×12	20	4 000	61 500	49 000	98 000	845	1 130	6 750	1 130	6 750	1.9	7.7
80	9x14x12	20	4 000	80 500	64 000	143 000	1 240	2 330	12 500	2 330	12 500	2.6	1.1
105	14×20×17	22.5	3 990	91 000	72 000	148 000	1 840	2 210	12 900	2 210	12 900	3.3	12.0
	11/20/17	22.0	0 000	111 000	88 000	197 000	2 460	3 850	20 600	3 850	20 600	4.3	12.0
120	16×23×20	30	3 960	139 000	111 000	215 000	3 150	3 800	22 000	3 800	22 000	5.5	17.2
120	10x23x20	30	3 900	172 000	137 000	292 000	4 250	6 800	36 000	6 800	36 000	7.2	17.2
150	18×26×22	35	3 900	260 000	206 000	420 000	7 300	9 050	51 000	9 050	51 000	11.0	25.9
130	10/20/22	55	5 500	340 000	269 000	615 000	10 700	18 700	95 000	18 700	95 000	15.5	20.0

21	The basic	beol	ratina	comply	with t	tho	ISO	standard.	(150	1/1728_1	1/1728-21
21	The basic	IUau	raung	comply	VVILII L	uie	130	Stanuaru.	(130	14/20-1,	14/20-2)

 $\mathit{C}_{\scriptscriptstyle 50}$; the basic dynamic load rating for 50 km rated fatigue life

 C_{100} ; the basic dynamic load rating for 100 km rated fatigue life

	A	ssemb	ly					Ball slic	le							
Model No.	Height			Width	Length		Mour	nting hole				Grease	fittin	g	Width	Height
	Н	E	<i>W</i> 2	W	L	В	J	$M \times \text{pitch} \times \ell$	<i>L</i> ₁	K	Т	Hole size	<i>T</i> ₁	N	<i>W</i> ₁	<i>H</i> ₁
LA25EL LA25GL	36	5.5	23.5	70	79.8 107.8	57	45	45 M8×1.25×12 5		30.5	11	M6×0.75	6	11	23	22
LA30EL LA30GL	42	7.5	31	90	100.2 126.2	72	52	M10×1.5×16	72 98	34.5	11	M6×0.75	6.5	11	28	28
LA35EL LA35GL	48	7.5	33	100	110.6 144.6	82	62	M10×1.5×15	80 114	40.5	12	M6×0.75	8	11	34	30.8
LA45EL LA45GL	60	10	37.5	120	141.4 173.4	100	80	M12×1.75×18	105 137	50	13	Rc1/8	10	13	45	36
LA55EL LA55GL	70	12	43.5	140	165.4 203.4	116	95	M14×2×21	126 164	58	15	Rc1/8	11	13	53	43.2
LA65EL LA65GL	90	14	53.5	170	196.2 256.2	142	110	M16×2×24	147 207	76	22	Rc1/8	19	13	63	55

Notes: 1) LA Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.
LA-FL (High-load type / Standard) LA-HL (Super-high-load type / Long)

Front view of FL and HL types

Unit: mm

	A	ssemb	ly					Ball slid	le							
Model No.	Height			Width	Length		Mour	iting hole	-			Grease	fittin	g	Width	Height
	Н	Ε	W 2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	К	Т	Hole size	<i>T</i> ₁	Ν	W_1	H ₁
LA25FL LA25HL	36	5.5	23.5	70	79.8 107.8	57	45	7×10	58 86	30.5	11	M6×0.75	6	11	23	22
LA30FL LA30HL	42	7.5	31	90	100.2 126.2	72	52	9×12	72 98	34.5	11	M6×0.75	6.5	11	28	28
LA35FL LA35HL	48	7.5	33	100	110.6 144.6	82	62	9×13	80 114	40.5	12	M6×0.75	8	11	34	30.8
LA45FL LA45HL	60	10	37.5	120	141.4 173.4	100	80	11×15	105 137	50	13	Rc1/8	10	13	45	36
LA55FL LA55HL	70	12	43.5	140	165.4 203.4	116	95	14×18	126 164	58	15	Rc1/8	11	13	53	43.2
LA65FL LA65HL	90	14	53.5	170	196.2 256.2	142	110	16×23	147 207	76	22	Rc1/8	19	13	63	55

Notes: 1) LA Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.

												011	π. ππ	
Rail						Basic Io	oad ratir	ng				We	ight	
Pitch	Mounting	G	Max.	²⁾ Dyn	amic	Static		Static I	momen	t (N∙m)		Ball	Rail	
	bolt hole		length	[50km]	[100km]	С о	MRO	M	PO	M	1 _{Y0}	slide		
F	$d \times D \times h$	(reference)	L_{0max}	$C_{50}(N)$	$C_{100}(N)$	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)	
60	60 7×11×9 20	7×11×0	20	3 960	30 000	23 900	50 000	290	410	2 490	410	2 490	0.8	3.7
				40 500	32 500	77 000	445	935	5 000	935	5 000	1.1		
80	9×14×12	20	4 000	47 000	37 000	77 500	535	820	4 800	820	4 800	1.3	5.8	
00	80 9×14×12 20	0.14.12 20 400	4 000	58 000	46 000	105 000	725	1 470	8 050	1 470	8 050	1.8	0.0	
				61 500	49 000	98 000	845	1 130	6 750	1 1 30	6 750	1.9		
80	80 9×14×12 20	<14×12 20 4 000	80 500	64 000	143 000	1 240	2 330	12 500	2 330	12 500	2.6	7.7		
105	14×20×17	22.5	3 990	91 000	72 000	148 000	1 840	2 210	12 900	2 210	12 900	3.3	12.0	
105	14X20X17	22.0	3 990	111 000	88 000	197 000	2 460	3 850	20 600	3 850	20 600	4.3	12.0	
100	10.00.00	20	2.000	139 000	111 000	215 000	3 150	3 800	22 000	3 800	22 000	5.5	17.0	
120	16×23×20	30	3 960	172 000	137 000	292 000	4 250	6 800	36 000	6 800	36 000	7.2	17.2	
150	10.00.00	0.5		260 000	206 000	420 000	7 300	9 050	51 000	9 050	51 000	11.0	05.0	
150 18×26×22	35	3 900	340 000	269 000	615 000	10 700	18 700	95 000	18 700	95 000	15.5	25.9		

2) The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

 $\mathcal{C}_{\scriptscriptstyle 50}$; the basic dynamic load rating for 50 km rated fatigue life

 C_{100} ; the basic dynamic load rating for 100 km rated fatigue life

NSK

1. HA Series	A291
2. HS Series	A305

A-5-4 High-Precision Machine and High-Precision Measuring Equipment

A290

A-5-4.1 HA Series

1. Features (1) High motion accuracy

High motion accuracy is achieved in both narrow and wide ranges by the adoption of ultra-long ball slides and the optimum design

of the ball recirculation component. (2) Ball passage vibration reduced to one-third of our conventional models

Our extensive performance tests show ball passage vibration has been reduced to onethird of our conventional models, dramatically improving straightness in table unit.

(3) Installation of rail with greater accuracy

Increased counterbore depth of the rail mounting hole reduces rail deflection, which is caused by bolt tightening when fixing the rail to the mounting base to 50% or less. This feature restrains the pitching motion of ball slide whose frequency matches to the mounting hole pitch.

In addition, the length of mounting hole pitch has been reduced by one-half of the conventional models, so the rail can be more accurately installed in position.

(4) High rigidity and load capacity with lower friction

High rigidity, high load capacity and low friction are achieved by increasing the number of balls.

(5) Compact design

Reduced body size enables more compact machinery.

(6) Four-way equal load distribution

Contact angle is set at 45 degrees in all grooves, dispersing the load to four ball rows irrespective of load direction. This realizes equal rigidity and load carrying capacity in vertical and lateral directions and provides well-balanced design.

(7) Strong against shock load

Load from any direction, vertical and lateral,

is received by four ball rows at all times. The number of the ball row which receives the load is larger than in other linear guides, making this series stronger against shock load.

(8) High accuracy at manufacturing

Fixing the measuring rollers to the ball grooves is easy thanks to the Gothic arch groove. Ball-groove measuring is accurate and simple. This benefits a highly precise and stable manufacturing.

Fig. 2 Super rigidity design

Fig. 3 Rail grinding

Measurement results of ball passage vibration

Ball passage vibration can translate into posture changes in the ball slide which result from ball passage (circulation). In the HA Series, this vibration has been substantially reduced to one-third of conventional models.

Fig. 5 Schematic view of measurement of ball passage vibration

Fig. 6 Measurement results of HA Series and conventional Series

NSK

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

2. Ball slide shape

3. Accuracy and preload

(1) Running parallelism of ball slide

Table 1 Unit: μm							
	Pre	Preloaded assembly					
Rail length (mm) over or less	Ultra precision P3	Super precision P4	High precision P5				
- 200	2	2	4				
200 - 250	2	2.5	5				
250 - 315	2	2.5	5				
315 – 400	2	3	6				
400 - 500	2	3	6				
500 - 630	2	3.5	7				
630 - 800	2	4.5	8				
800 – 1 000	2.5	5	9				
1 000 – 1 250	3	6	10				
1 250 – 1 600	4	7	11				
1 600 – 2 000	4.5	8	13				
2 000 – 2 500	5	10	15				
2 500 – 3 150	6	11	17				
3 150 – 4 000	9	16	23				

NSK

(2) Accuracy standard

Three accuracy grades are available: Ultra precision P3, Super precision P4 and High precision P5.

	Unit: µm			
Accuracy grade Characteristics	Ultra precision P3	Super precision P4	High precision P5	HA S
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 3	±10 5	±20 7	eries
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 3	±15 7	±25 10	
Running parallelism of surface C to surface A Running parallelism of surface D to surface B		Refer to Table 1 and Fig. 7	1	

(3) Assembled accuracy

Fig. 7

(4) Preload and rigidity

Slight preload Z1 and Medium preload Z3 are available for preload, which can be selected for specific applications.

		Table 3			
Ma dal Na	Prelo	ad (N)	Rigidity (N/µm)		
Model No.	Slight preload (Z1)	Medium preload (Z3)	Slight preload (Z1)	Medium preload (Z3)	
HA25	735	2 990	635	1 030	
HA30	1 030	4 400	880	1 270	
HA35	1 470	6 100	1 030	1 620	
HA45	1 960	8 150	1 230	2 060	
HA55	3 150	13 100	1 520	2 450	

4. Maximum rail length

Table 4 shows the limitations of rail length.However, the limitations vary by accuracy grades.

Table 4 Length limitations of rails Unit: mm

					onnt. minn
Series Size	25	30	35	45	55
HA	3 960	4 000	4 000	3 990	3 960

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

Table 5							
Value	Preload			Model No.			
value	FIElUau	HA25	HA30	HA35	HA45	HA55	
Permissible values of	Z1	20	20	23	26	34	
parallelism in two rails e1	Z3	15	14	17	19	25	
Permissible values of	71 70	050 /500					
parallelism (height) in two rails e_2	Z1,Z3	250 µm/500 mm					

(2) Shoulder height of the mounting surface and corner radius r

		Table 6		Unit: mm	
Model No.	Corner radiu	s (maximum)	Shoulder height		
woder No.	ľ _a	Γ _b	H	Η"	
HA25	0.5	0.5	5	5	
HA30	0.5	0.5	6	6	
HA35	0.5	0.5	6	6	
HA45	0.7	0.7	8	8	
HA55	0.7	0.7	10	10	

T-1-1- C

Fig. 10 Shoulder for the Fig. 11 S rail datum surface s

Fig. 11 Shoulder for the ball slide datum surface

6.	Lu	brication	compo	onents	
_	-				

Refer to pages A38 and D13 for linear guide lubrication.

(1) Types of lubrication accessories

Fig. 12 and Table 7 show grease fittings and tube fittings.

We provide lubrication accessories with extended thread body length (L) for the addition of dust-proof accessories such as NSK K1 lubrication unit, double seal and protector.

We provide a suitable lubrication accessory for the special requirement on dust-proof accessories.

Consult NSK for a lubrication accessory with extended length of thread body for your convenience of replenishing lubricant.

When you require stainless lubrication accessories, please ask NSK.

(2) Mounting position of lubrication accessories

The standard position of grease fittings is the end face of ball slide. We mount them on the side of end cap for an option. (**Fig. 13**)

Please consult NSK for installation of grease or tube fittings to the ball slide body or the side of end cap.

When using a piping unit with thread of M6 \times 1, you require a connector to connect to a grease fitting mounting hole with M6 \times 0.75. The connector is available from NSK.

Fig. 13 Mounting position of lubrication accessories

Fig. 12 Grease fitting and tube fitting

	1	Table 7	Unit: mm
Model No.	Dust-proof specification	Grease fitting	Tube fitting
	specification	Thread body length L	Thread body length L
	Standard	5	5
HA25	With NSK K1	14	12
HAZ5	Double seal	10	9
	Protector	10	9
	Standard	5	6
HA30	With NSK K1	14	13
HA30	Double seal	12	11
	Protector	12	11
	Standard	5	6
HA35	With NSK K1	14	13
TA35	Double seal	12	11
	Protector	12	11
	Standard	8	17
HA45	With NSK K1	18	21.5
TIA45	Double seal	14	17
	Protector	14	17
	Standard	8	17
HA55	With NSK K1	18	21.5
TA00	Double seal	14	17
	Protector	14	17

HA Series

7. Dust-proof components (1) Standard Specification

The HA Series can be readily used as they have a dust protection means for normal conditions. As the standard equipment, the ball slides have an end seal on both ends, bottom seals at the bottom, and an inner seal in inside.

Fig. 14

Table 8 Seal friction per ball slide (maximum value)

					Unit: N
Series Size	25	30	35	45	55
HA	17	17	19	21	22

(2) NSK K1[™] lubrication unit

Table 9 shows the dimensions of linear guides equipped with the NSK K1 lubrication unit.

	Table 9										
Model No.	Ball slide model	Standard ball slide length	Ball slide length installed with two NSK K1 L	Per NSK K1 thickness V1	Protective cover thickness V ₂	Protruding area of the grease fitting N					
HA25	AN, EM	147.8	159.8	5.0	1.0	(14)					
HA30	AN, EM	177.2	190.2	5.5	1.0	(14)					
HA35	AN, AL, EM	203.6	216.6	5.5	1.0	(14)					
HA45	AN, AL, EM	233.4	248.4	6.5	1.0	(15)					
HA55	AN,AL, EM	284.4	299.4	6.5	1.0	(15)					

Note: Ball slide length equipped with NSK K1 =

(Standard ball slide length) + (Thickness of NSK K1, V, \times Number of NSK K1) + (Thickness of the protective cover V, \times 2)

(3) Double seal and protector

For the HA Series, double seal and protectors can be installed only before shipping from the factory. Please consult with NSK when you require dust tight protection.

Table 10 shows the increased thickness of $V_{\scriptscriptstyle 3},$ and $V_{\scriptscriptstyle 4}$ when the end seal and the protector are installed.

	Table 10	Unit: mm
Model No.	Thickness	Thickness
would no.	of end seal: $V_{\scriptscriptstyle 3}$	of protector: V_4
HA25	3.2	3.6
HA30	4.4	4.2
HA35	4.4	4.2
HA45	5.5	4.9
HA55	5.5	4.9

(4) Caps to plug the rail mounting bolt hole

Table	11 Caps t	o plug rail bolt	thole
Model No.	Bolt to	Сар	Quantity
would no.	secure rail	reference No.	/case
HA25	M6	LG-CAP/M6	20
HA30, HA35	M8	LG-CAP/M8	20
HA45	M12	LG-CAP/M12	20
HA55	M14	LG-CAP/M14	20

Ball slide End cap End seal Connector washer Collar End seal Grease fitting

NSK

Fig. 16 Protector

Fig. 17

HA Series

8. Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

Table 12 Material/surface treatment code

Code	Description
С	Special high carbon steel (NSK standard)
D	Special high carbon steel with surface treatment
Z	Other, special

Table 13 Accuracy code									
Accuracy	Standard (Without NSK K1)	With NSK K1							
Ultra precision grade	P3	К3							
Super precision grade	P4	K4							
High precision grade	P5	K5							

Note: Refer to page A38 for NSK K1 lubrication unit.

9. Dimensions HA-AN HA-AL

Front view of AL type

Side view of AL type

1: Z1, 3: Z3

Front view of AN type	Front	view	of	AN	type
-----------------------	-------	------	----	----	------

Side view of AN type

Unit: mm

	A	ssemb	ly						Ball slie	de						R	ail
Model No.	Height			Width	Length		M	ounti	ng hole				Grease	fittin	g	Width	Height
Woder No.	Н	Ε	<i>W</i> 2	W	L	В	J	J2	$M \times \text{pitch} \times \ell$	L ₁	к	Т	Hole size	<i>T</i> ₁	N	W_1	H ₁
HA25AN	40	5.5	12.5	48	147.8	35	100	50	M6×1.0×10	126	34.5	12	M6×0.75	10	11	23	22
HA30AN	45	7.5	16	60	177.2	40	120	60	M8×1.25×11	149	37.5	14	M6×0.75	9.5	11	28	28
HA35AN	55	7.5	18	70	203.6	50	140	70	M8×1.25×12	173	47.5	15	M6×0.75	15	11	34	30.8
HA35AL	48	7.5	10	70	203.0	50	140	/0	M8×1.25×10	173	40.5	15	1010×0.75	8	11	34	30.8
HA45AN	70	10	20.5	86	233.4	60	160	80	M10×1.5×16	197	60	17	Rc1/8	20	13	45	36
HA45AL	60	10	20.5	00	233.4	00	100	00	1011021.5210	137	50	17	110170	10	13	45	30
HA55AN	80	12	23.5	100	284.4	75	206	103	M12×1.75×18	2/15	68	18	Rc1/8	21	13	53	43.2
HA55AL	70	12	20.0	100	204.4	75	200	03	1011221.75210	240	58	10	101/0	11	13	55	40.2

Notes: 1) The HA Series does not have a ball retainer. Be aware that the balls fall out when a ball slide is withdrawn from the rail.

												0.11	inc. minin
	Rail					Basic load rating							eight
Pitch	Mounting	G	Maximum	²⁾ Dyn	²⁾ Dynamic Static		Static moment (N·m)					Ball	Rail
	bolt hole	length		[50km]	[100km]	С о	MRO	M	PO	M	YO	slide	
F	$d \times D \times h$	(reference)	L _{0max}	$C_{50}(N)$	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
30	7×11×16.5	20	3 960	54 000	43 000	115 000	670	2 060	10 100	2 060	10 100	1.2	3.7
40	9×14×21	20	4 000	79 500	63 500	166 000	1 140	3 550	17 400	3 550	17 400	1.8	5.8
40	9×14×23.5	20	4 000	111 000	88 000	226 000	1 950	5 650	27 100	5 650	27 100	3.0	7.7
40	5714725.5	20	4 000	111 000	00 000	220 000	1 3 3 0	5 050	27 100	5 050	27 100	2.6	/./
52.5	14×20×27	22.5	3 990	147 000	117 000	295 000	3 700	0 150	40 500	0 150	40 500	6.0	12.0
52.5	14720727	22.0	3 3 3 0	147 000	117 000	235 000	3700	0 4 5 0	40 500	0 4 5 0	40 500	5.0	12.0
60	16×23×32.5	30	3 960	232 000	184 000	445 000	6 500	15 400	75 000	15 400	75 000	9.4	17.2
00	10723832.0	30	5 900	232 000	104 000	445 000	0.500	15 400	/5 000	15 400	/5 000	7.8	17.2

2) The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

C₅₀; the basic dynamic load rating for 50 km rated fatigue life C₁₀₀; the basic dynamic load rating for 100 km rated fatigue life

HA-EM

Front view of EM type

	A	ssem	nbly						Bal	l slide							R	lail
Model No	Height			Width	Length			Μ	ounting hole					Grease	fittin	g	Width	Height
NOUEI NO																		
	Н	Ε	W_2	W	L	В	J	J_2	$M \times \operatorname{pitch} \times \ell$	Q_1	<i>L</i> ₁	K	Т	Hole size	T_1	Ν	W_1	H_1
HA25EM	36	5.5	23.5	70	147.8	57	100	50	M8×1.25×10	6.8	126	30.5	11	M6×0.75	6	11	23	22
HA30EM	42	7.5	31	90	177.2	72	120	60	M10×1.5×12	8.6	149	34.5	11	M6×0.75	6.5	11	28	28
HA35EM	48	7.5	33	100	203.6	82	140	70	M10×1.5×13	8.6	173	40.5	12	M6×0.75	8	11	34	30.8
HA45EM	60	10	37.5	120	233.4	100	160	80	M12×1.75×15	10.5	197	50	13	Rc1/8	10	13	45	36
HA55EM	70	12	43.5	140	284.4	116	206	103	M14×2×18	12.5	245	58	15	Rc1/8	11	13	53	43.2

Notes: 1) HA Series does not have a ball retainer. Be aware that the balls fall out when a ball slide is withdrawn from the rail.

Side view of EM type

Unit: mm

												UII	III. IIIIII
	Rail			Basic load rating									eight
Pitch	Mounting	G	Maximum	²⁾ Dynamic		Static	Static moment (N·m)				Ball	Rail	
	bolt hole		length	[50km]	[100km]	С о	MRO	M _{RO} M _{PO}		M	YO	slide	
F	$d \times D \times h$	(reference)	L _{0max}	$C_{50}(N)$	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
30	7×11×16.5	20	3 960	54 000	43 000	115 000	670	2 060	10 100	2 060	10 100	1.6	3.7
40	9×14×21	20	4 000	79 500	63 500	166 000	1 140	3 550	17 400	3 550	17 400	2.6	5.8
40	9×14×23.5	20	4 000	111 000	88 000	226 000	1 950	5 650	27 100	5 650	27 100	3.8	7.7
52.5	14×20×27	22.5	3 990	147 000	117 000	295 000	3 700	8 450	40 500	8 450	40 500	6.6	12.0
60	16×23×32.5	30	3 960	232 000	184 000	445 000	6 500	15 400	75 000	15 400	75 000	11	17.2

2) The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

C₅₀; the basic dynamic load rating for 50 km rated fatigue life C₁₀₀; the basic dynamic load rating for 100 km rated fatigue life

A-5-4.2 HS Series

1. Features

(1) High motion accuracy

High motion accuracy is achieved in both narrow and wide ranges by adopting ultralong ball slides and optimum design features for the ball recirculation component.

(2) Ball passage vibration reduced to one-third of our conventional models

Tests show ball passage vibration has been reduced to one-third of our conventional models, dramatically improving straightness in table unit.

(3) Installation of rail with greater accuracy

Increased counterbore depth of the rail mounting hole reduces rail deflection, which is caused by bolt tightening when fixing the rail to the mounting base, to 50% or less. This feature restrains the pitching motion of ball slide whose frequency matches to the mounting hole pitch.

In addition, the mounting hole pitch has been reduced by one-half of the conventional models, so the rail can be more accurately installed in position.

(4) High rigidity and load capacity with lower friction

High rigidity, high load capacity and low friction are achieved by increasing the number of balls.

(5) Compact design

Reduced body size enables more compact machinery.

(6) High load carrying capacity to vertical direction

The contact angle is set at 50 degrees, increasing load carrying capacity as well as rigidity against the load in vertical direction.

(7) High resistance against impact load

The bottom ball groove is formed in Gothic arch and the center of the top and bottom grooves are offset as shown in **Fig. 2**. The vertical load is usually carried by top two ball rows at where balls are contacting at two points. Because of this design, the bottom ball rows will carry the load when a large impact load is applied as shown in **Fig. 3**. This

assures high resistance to the impact load. (8) High accuracy at manufacturing

As showing in **Fig. 4**, fixing the measuring rollers to the ball groove is easy thanks to the Gothic arch groove. This makes easy and accurate measuring of ball grooves.

(9) Improve rating life dramatically

New ball groove geometry is introduced, which has been developed by utilizing NSK's state-of-the-art tribological and analytical technologies. Due to the optimized distribution of contact surface pressures, the rating life has dramatically increased.

As compared with the conventional products, the load rating capacity has increased to 1.3 times, while the life span has increased to twice^{*1}.

*1: Representative values of series.

Fig. 1 HS Series

Fig. 2 Enlarged illustration: Offset Gothic arch

Measurement results of ball passage vibration

Ball passage vibration can translate into posture changes in the ball slide which result from ball passage (circulation). In the HS Series, this vibration has been substantially reduced to one-third of conventional models.

Fig. 5 Schematic view of measurement of ball passage vibration

HS Series HS Series four ball slides 0.12 um Model No.: HS30 Straightness Preload: Z1 Table dimensions: 460 mm × 380 mm Strokes: 200 mm The same table is used **Conventional Series** 0.36 un Model No.: LS30 Straightness Preload: 71 Table dimensions: 460 mm × 380 mm Conventional Series eight ball slides Strokes: 200 mm

Fig. 6 Measurement results of HS Series and conventional Series

A305

2. Ball slide shape

3. Accuracy and preload

(1) Running parallelism of ball slide

	Tabl	e 1	Unit: µm					
	Preloaded assembly							
Rail length (mm) over or less	Ultra precision P3	Super precision P4	High precision P5					
- 200	2	2	4					
200 - 250	2	2.5	5					
250 - 315	2	2.5	5					
315 - 400	2	3	6					
400 - 500	2	3	6					
500 - 630	2	3.5	7					
630 - 800	2	4.5	8					
800 – 1 000	2.5	5	9					
1 000 – 1 250	3	6	10					
1 250 – 1 600	4	7	11					
1 600 – 2 000	4.5	8	13					
2 000 – 2 500	5	10	15					
2 500 – 3 150	6	11	17					
3 150 – 4 000	9	16	23					

_ . .

(2) Accuracy Standard

Three accuracy grades are available: Ultra precision P3, Super precision P4 and High precision P5.

	Table 2	Table 2						
Accuracy grade Characteristics	Ultra precision P3	Super precision P4	High precision P5	HS S				
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 3	±10 5	±20 7	eries				
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 3	±15 7	±25 10					
Running parallelism of surface C to surface A Running parallelism of surface D to surface B		Refer to Table 1 and Fig. 7	1					

(3) Assembled accuracy

(4) Preload and rigidity

	Table 3												
Model No.	Prelo	ad (N)	Rigidity (N/µm)										
	1100		Vertical	direction	Lateral direction								
	Slight preload (Z1)	Medium preload (Z3)	Slight preload (Z1)	Medium preload (Z3)	Slight preload (Z1)	Medium preload (Z3)							
HS15	98	785	260	530	173	355							
HS20	147 1 030		305	600	212	415							
HS25	245 1 620		385	735	263	505							
HS30	390 2 550		505 965		345	665							
HS35	590 3 550		610 1 140		415	780							

Slight preload Z1 and Medium preload Z3 are available for preload, which can be selected for specific applications.

4. Maximum rail length

Table 4 shows the limitation. The dimension in parenthesis is for stainless steel products. However, the limitations vary by accuracy grades.

Table 4 Length limitation of rails

Table 4 Length limitation of rails										
Series Size 15		20	25	30	35					
HS	2 000 (1 700)	3 960 (3 500)	3 960 (3 500)	4 000 (3 500)	4 000 (3 500)					

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

Table 5 Unit: μm										
Value	Preload									
value	Fleioau	HS15	HS20	HS25	HS30	HS35				
Permissible values of	Z1	18	20	26	31	37				
parallelism in two rails e1	Z3	12	14	18	22	26				
Permissible values of parallelism (height) in two rails e ₂	Z1, Z3		3	30 µm/500 mn	n					

(2) Shoulder height of the mounting surface and corner radius r

		14510 0		
				Unit:
_	Corner radius	s (maximum)	Shoulde	r heig
0.	ľ _a	ľ,	H	H
	0.5	0.5	4	4
	0.5	0.5	4.5	5
	0.5	0.5	5	5

6

6

mm

6

6

Table 6

0.5 0.5 0.5 0.5

6. Lubrication components

Refer to pages A38 and D13 for linear guide lubrication.

(1) Types of lubrication accessories

Fig. 12 and Table 7 show grease fittings and tube fittings.

We provide lubrication accessories with extended thread body length (L) for the addition of dust-proof accessories such as NSK K1 lubrication unit, double seal and protector.

We provide a suitable lubrication accessory for the special requirement on dust-proof accessories.

Consult NSK for a lubrication accessory with extended length of thread body for your convenience of replenishing lubricant.

When you require stainless lubrication accessories, please ask NSK.

(2) Mounting position of lubrication accessories

The standard position of grease fittings is the end face of ball slide. We mount them on the side of end cap for an option. (Fig. 13)

Please consult NSK for installation of grease or tube fittings to the ball slide body or the side of end cap.

When using a piping unit with thread of $M6 \times 1$, you require a connector to connect to a grease fitting mounting hole with M6 \times 0.75. The connector is available from NSK.

Fig. 13 Mounting position of lubrication accessories

Fig. 12 Grease fitting and tube fitting

	1	Table 7	Unit: mm		
Model No.	Dust-proof specification	Grease fitting Drive-in	Tube fitting		
	specification	Thread body length L	Thread body length L		
	Standard	5	-		
HS15	With NSK K1	10	-		
H315	Double seal	*	-		
	Protector	*	-		
	Standard	5	-		
HS20	With NSK K1	10	-		
H520	Double seal	8	-		
	Protector	8	-		
	Standard	5	6		
HS25	With NSK K1	12	11		
H525	Double seal	10	9		
	Protector	10	9		
	Standard	5	6		
HS30	With NSK K1	14	13		
H530	Double seal	12	11		
	Protector	12	11		
	Standard	5	6		
HS35	With NSK K1	14	13		
по35	Double seal	12	11		
	Protector	12	11		

*) A connector is required for this model. Please contact NSK.

HS Series

7. Dust-proof components (1) Standard Specification

The HS Series can be readily used as they have a dust protection means for normal conditions. As the standard equipment, the ball slides have an end seal on both ends.

Bottom seal is equipped on bottom as an option.

Fig. 14

Table 8 Seal friction per ball slide (maximum): end seal only

					Unit: N
Series Size	15	20	25	30	35
HS	3	3	3	3	4

(2) NSK K1[™] lubrication unit

Refer to Table 9 for dimension of linear guides equipped with the NSK K1 lubrication unit.

	Table 9 Unit:												
Model No.	Ball slide model	Standard ball slide length	Ball slide length installed with two NSK K1 L	Per NSK K1 thickness V1	Protective cover thickness V ₂	Protruding area of the grease fitting N							
HS15	AL, EM	106	115.6	4.0	0.8	(5)							
HS20	AL, EM	119.7	130.3	4.5	0.8	(14)							
HS25	AL, EM	148	158.6	4.5	0.8	(14)							
HS30	AL, EM	176.1	188.1	5.0	1.0	(14)							
HS35	AL, EM	203.6	216.6	5.5	1.0	(14)							

Note: Ball slide length equipped with NSK K1 =

(Standard ball slide length) + (Thickness of NSK K1, $V_1 \times$ Number of NSK K1) + (Thickness of the protective cover $V_2 \times 2)$

(3) Double seal and protector

For the HS Series, double seal and protectors can be installed only before shipping from the factory. Please consult with NSK when you require dust tight protection.

Table 10 shows the increased thickness of $V_{\scriptscriptstyle 3}$ and $V_{\scriptscriptstyle 4}$ when the end seal and the protector are installed.

	Table 10	Unit: mm
Model No.	Thickness	Thickness
would no.	of end seal: $V_{\scriptscriptstyle 3}$	of protector: V_4
HS15	2.8	3
HS20	2.5	2.7
HS25	2.8	3.2
HS30	3.6	4.2
HS35	3.6	4.2

(4) Caps to plug the rail mounting bolt hole

Table 11 Caps to plug rail bolt hole

Model No.	Bolt to	Сар	Quantity
would no.	secure rail	reference No.	/case
HS15	M3	LG-CAP/M3	20
HS15	M4	LG-CAP/M4	20
HS20	M5	LG-CAP/M5	20
HS25, HS30	M6	LG-CAP/M6	20
HS35	M8	LG-CAP/M8	20

Fig. 16 Protector

Fig. 17

8. Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

Table 12 Material/surface treatment code

Code	Description
С	Special high carbon steel (NSK standard)
К	Stainless steel
D	Special high carbon steel with surface treatment
Н	Stainless steel with surface treatment
Z	Other, special

Table 13 Accuracy code										
Standard (Without NSK K1)	With NSK K1									
P3	K3									
P4	K4									
P5	K5									
	Standard (Without NSK K1) P3 P4									

Note: Refer to page A38 for NSK K1 lubrication unit.

9. Dimensions HS-AL

Front view of AL types

Side view of AL type

	A	ssemb	bly		Ball slide												
Model No.	Height			Width	Length		M	ounti	ing hole				Grease	fittin	g	Width	Height
Widder No.		_	147	147	,		,	ļ ,		,	K	Ŧ		-		147	.,
	Н	Ε	W_2	W	L	В	J	J_2	$M \times \text{pitch} \times \ell$	L_1	K	1	Hole size	I_1	Ν	W_1	H_1
HS15AL	24	4.6	9.5	34	106	26	60	30	M4×0.7×6	89.2	19.4	10	ø 3	6	3	15	12.5
HS20AL	28	6	11	42	119.7	32	80	40	M5×0.8×7	102.5	22	12	M6×0.75	5.5	11	20	15.5
HS25AL	33	7	12.5	48	148	35	100	50	M6×1×9	126.4	26	12	M6×0.75	7	11	23	18
HS30AL	42	9	16	60	176.1	40	120	60	M8×1.25×12	150.7	33	13	M6×0.75	8	11	28	23
HS35AL	48	10.5	18	70	203.6	50	140	70	M8×1.25×12	175.6	37.5	14	M6×0.75	8.5	11	34	27.5

Notes: 1) The HS Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail. 2) External appearance of stainless steel ball slides differ from those of carbon steel ball slide.

												Ur	nit: mm
Rail						Basic lo	oad ratir	ng				We	eight
Pitch		G	Max. length	³Dyn	amic	Static		Static	momen	t (N∙m)		Ball	Rail
	bolt hole		L _{0max} .	[50km]	[100km]	С о	M _{RO}	M	PO	M	YO	slide	
F	$d \times D \times h$	(reference)	() for stainless	$C_{50}(N)$	$C_{100}(N)$	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
30	*3.5×6×8.5 4.5×7.5×8.5	20	2 000 (1 700)	20 500	16 300	40 000	199	395	1 990	335	1 670	0.34	1.4
30	6×9.5×10.5	20	3 960 (3 500)	27 300	21 600	52 000	350	590	2 930	495	2 460	0.52	2.3
30	7×11×12	20	3 960 (3 500)	44 500	35 000	78 000	605	1 090	5 450	910	4 600	0.85	3.1
40	7×11×16	20	4 000 (3 500)	68 000	54 000	127 000	1 190	2 120	10 600	1 780	8 850	1.7	4.8
40	9×14×20	20	4 000 (3 500)	94 500	75 000	172 000	1 980	3 350	16 600	2 820	13 900	2.5	7.0

3) The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

 C_{so} ; the basic dynamic load rating for 50 km rated fatigue life C_{so} ; the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.

4) Parenthesized dimensions are applicable to stainless steel products.

*) Standard rail mounting bolt hole for HS15 is specified as hole for M3 (3.5 × 6 × 8.5). Please contact us to request a different hole for M4 (4.5 × 7.5 × 8.5).

NSK

HS-EM

Front view of EM type

		Side view of EM type	
		M _{PO}	
		$\begin{bmatrix} (M) \\ \vdots \\ J_2 \\ \vdots \\ $	
H ₁			
	G F	n×F	(G)
	< ><	Lo	

	A	ssem	ıbly		Ball slide													
Model No.	Height			Width	Length			Μ	ounting hole					Grease	fittin	ıg	Width	Height
Model No.																		
	Н	Ε	W_2	W	L	В	J	J_2	$M \times \text{pitch} \times \ell$	Q_2	L ₁	Κ	Τ	Hole size	T_1	N	W_1	H_1
HS15EM	24	4.6	18.5	52	106	41	60	30	M5×0.8×7	4.4	89.2	19.4	8	ø 3	6	3	15	12.5
HS20EM	28	6	19.5	59	119.7	49	80	40	M6×1×9 (M6×1×9.5)	5.3	102.5	22	10	M6×0.75	5.5	11	20	15.5
HS25EM	33	7	25	73	148	60	100	50	M8×1.25×10 (M8×1.25×11.5)	6.8	126.4	26	11 (12)	M6×0.75	7	11	23	18
HS30EM	42	9	31	90	176.1	72	120	60	M10×1.5×12 (M10×1.5×14.5)	8.6	150.7		11	M6×0.75		11	28	23
HS35EM	48	10.5	33	100	203.6	82	140	70	M10×1.5×13 (M10×1.5×14.5)	8.6	175.6	37.5	12 (15)	M6×0.75	8.5	11	34	27.5

Notes: 1) The HS Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail. 2) External appearance of stainless steel ball slides differ from those of carbon steel ball slide.

												Ur	iit: mm
Rail						Basic Io	oad ratir	ng				We	eight
Pitch	Mounting	G	Max.	³Dyn	³ Dynamic Static Static moment (N·m)						Ball	Rail	
	bolt hole		length L _{omax} .	[50km]	[100km]	С о	MRO	M	PO	M	YO	slide	
F	$d \times D \times h$	(reference)	() for stainless	$C_{50}(N)$	$C_{100}(N)$	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
30	*3.5×6×8.5 4.5×7.5×8.5	20	2 000 (1 700)	20 500	16 300	40 000	199	395	1 990	335	1 670	0.45	1.4
30	6×9.5×10.5	20	3 960 (3 500)	27 300	21 600	52 000	350	590	2 930	495	2 460	0.67	2.3
30	7×11×12	20	3 960 (3 500)	44 500	35 000	78 000	605	1 090	5 450	910	4 600	1.3	3.1
40	7×11×16	20	4 000 (3 500)	68 000	54 000	127 000	1 190	2 120	10 600	1 780	8 850	2.4	4.8
40	9×14×20	20	4 000 (3 500)	94 500	75 000	172 000	1 980	3 350	16 600	2 820	13 900	3.4	7.0

3) The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

 C_{so} ; the basic dynamic load rating for 50 km rated fatigue life C_{so} ; the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.

4) Parenthesized dimensions are applicable to stainless steel products.

*) Standard rail mounting bolt hole for HS15 is specified as hole for M3 (3.5 × 6 × 8.5). Please contact us to request a different hole for M4 (4.5 × 7.5 × 8.5).

A317

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

NSK

5. The Comparative Table of Old and New Series

	New Series					r series		
	Ball slide mounting hole	Dynamic		Ball slide mounting hole	Dynamic		Ball slide mounting hole	Dynamic
Model	dimension	load rating	Model	dimension	load rating	Model	dimension	load ratin
No.	$M \times pitch \times \ell < Q_2 >$		No.	$M \times \text{pitch} \times \ell < Q_2 >$	C50 [N]	No.	$M \times pitch \times \ell < Q_2 >$	C50
	[mm]	[IN]		$Q_1 \times \ell \text{ [mm]}$			$\hat{Q}_1 \times \ell \text{ [mm]}$	[IN]
IH15AN	M4×0.7×6	14 200	LH15AN	M4×0.7×6	10 800	SH15AN	M4×0.7×6	10 10
IH15BN	M4×0.7×6	18 100	LH15BN	M4×0.7×6	14 600	SH15BN	M4×0.7×6	13 40
			LH15EL	M5×0.8×8		SH15EL	M5×0.8×8	
H15EM	M5×0.8×7 <4.4>	14 200	LH15EM	M5×0.8×7 <4.4>	10 800	SH15EM	M5×0.8×7 <4.4>	10 10
			LH15FL	4.5×7	1	SH15FL	4.5×7	1
			LH15GL	M5×0.8×8		SH15GL	M5×0.8×8	
VH15GM	M5×0.8×7 <4.4>	18 100	LH15GM	M5×0.8×7 <4.4>	14 600	SH15GM	M5×0.8×7 <4.4>	13 40
intodim	1110/010/07 (4142	10100	LH15HL	4.5×7	14000	SH15HL	4.5×7	10 40
H20AN	M5×0.8×6	23 700	LH20AN	M5×0.8×6	17 400	SH20AN	M5×0.8×6	16 30
NH20BN	M5×0.8×6	30 000	LH20BN	M5×0.8×6	23 500	SH20BN	M5×0.8×6	21 60
	1015X0.8X0	30 000	LH20EL	M6×1×10	23 500	SH20EL		2100
NH20EM	M6×1×9.5 <5.3>	23 700	LH20EM		17 400	SH20EL	M6×1×10 M6×1×9.5 <5.3>	16 30
	1010×1×9.5 < 5.5>	23 /00		M6×1×9.5 <5.3>	17 400			10.30
			LH20FL LH20GL	6×9.5		SH20FL SH20GL	6×9.5	
		00.000		M6×1×10	00 500		M6×1×10	04.00
VH20GM	M6×1×9.5 <5.3>	30 000	LH20GM	M6×1×9.5 <5.3>	23 500	SH20GM	M6×1×9.5 <5.3>	21 60
			LH20HL	6×9.5		SH20HL	6×9.5	
VH25AL	M6×1×6	33 500	LH25AL	M6×1×6	25 600	SH25AL	M6×1×6	22 40
VH25AN	M6×1×9	33 500	LH25AN	M6×1×9	25 600	SH25AN	M6×1×9	22 40
NH25BL	M6×1×6	45 500	LH25BL	M6×1×6	34 500	SH25BL	M6×1×6	32 00
H25BN	M6×1×9	45 500	LH25BN	M6×1×9	34 500	SH25BN	M6×1×9	32 00
			LH25EL	M8×1.25×16(12)		SH25EL	M8×1.25×16(12)	
VH25EM	M8×1.25×10(11.5) <6.8>	33 500	LH25EM	M8×1.25×10(11.5) <6.8>	25 600	SH25EM	M8×1.25×10(11.5) <6.8>	22 40
			LH25FL	7×10(11.5)	1	SH25FL	7×10(11.5)	1
			LH25GL	M8×1.25×16(12)		SH25GL	M8×1.25×16(12)	
VH25GM	M8×1.25×10(11.5) <6.8>	45 500	LH25GM	M8×1.25×10(11.5) <6.8>	34 500	SH25GM	M8×1.25×10(11.5) <6.8>	32 00
		10 000	LH25HL	7×10(11.5)	1 0.000	SH25HL	7×10(11.5)	02.00
VH30AL	M8×1.25×8	41 000	LH30AL	M8×1.25×8	31 000	SH30AL	M8×1.25×8	31 00
VH30AN	M8×1.25×10	41 000	LH30AN	M8×1.25×10	31 000	SH30AN	M8×1.25×10	31 00
H30BL	M8×1.25×8	61 000	LH30BL	M8×1.25×8	46 000	SH30BL	M8×1.25×8	46 00
NH30BN	M8×1.25×10	61 000	LH30BN	M8×1.25×10	46 000	SH30BN	M8×1.25×10	46 00
IIISODIA	1010×1.23×10	01 000	LH30EL	M10×1.5×18(15)	40 000	SH30EL	M10×1.5×18(15)	40.00
	M10-1 E-12/14 E	47.000			25 500			25 50
VH30EM	M10×1.5×12(14.5) <8.6>	47 000	LH30EM	M10×1.5×12(14.5) <8.6>	35 500	SH30EM	M10×1.5×12(14.5) <8.6>	35 50
			LH30FL	9×12(14.5)		SH30FL	9×12(14.5)	
		04.000	LH30GL	M10×1.5×18(15)	40.000	SH30GL	M10×1.5×18(15)	40.00
NH30GM	M10×1.5×12(14.5) <8.6>	61 000	LH30GM	M10×1.5×12(14.5) <8.6>	46 000	SH30GM	M10×1.5×12(14.5) <8.6>	46 000
			LH30HL	9×12(14.5)		SH30HL	9×12(14.5)	
VH35AL	M8×1.25×8	62 500	LH35AL	M8×1.25×8	47 500	SH35AL	M8×1.25×8	47 50
NH35AN	M8×1.25×12	62 500	LH35AN	M8×1.25×12	47 500	SH35AN	M8×1.25×12	47 50
VH35BL	M8×1.25×8	81 000	LH35BL	M8×1.25×8	61 500	SH35BL	M8×1.25×8	61 50
NH35BN	M8×1.25×12	81 000	LH35BN	M8×1.25×12	61 500	SH35BN	M8×1.25×12	61 50
			LH35EL	M10×1.5×20		SH35EL	M10×1.5×20	
NH35EM	M10×1.5×13 <8.6>	62 500	LH35EM	M10×1.5×13 <8.6>	47 500	SH35EM	M10×1.5×13 <8.6>	47 50
			LH35FL	9×13		SH35FL	9×13	
			LH35GL	M10×1.5×20		SH35GL	M10×1.5×20	
VH35GM	M10×1.5×13 <8.6>	81 000	LH35GM	M10×1.5×13 <8.6>	61 500	SH35GM	M10×1.5×13 <8.6>	61 50
			LH35HL	9×13		SH35HL	9×13	
VH45AL	M10×1.5×10	107 000	LH45AL	M10×1.5×10	81 000	SH45AL	M10×1.5×10	76 50
NH45AN	M10×1.5×17	107 000	LH45AN	M10×1.5×17	81 000	SH45AN	M10×1.5×17	76 50
VH45BL	M10×1.5×10	131 000	LH45BL	M10×1.5×10	99 000	SH45BL	M10×1.5×10	94 50
NH45BN	M10×1.5×17	131 000	LH45BN	M10×1.5×17	99 000	SH45BN	M10×1.5×17	94 50
			LH45EL	M12×1.75×24		SH45EL	M12×1.75×24	
VH45EM	M12×1.75×15 <10.5>	107 000	LH45EM	M12×1.75×15 <10.5>	81 000	SH45EM	M12×1.75×15 <10.5>	76 50
			LH45FL	11×15		SH45FL	11×15	1
			LH45GL	M12×1.75×24		SH45GL	M12×1.75×24	
NH45GM	M12×1.75×15 <10.5>	131 000	LH45GM	M12×1.75×15 <10.5>	99 000	SH45GM	M12×1.75×15 <10.5>	94 50
			LH45HL	11×15	1	SH45HL	11×15	1 0.00
NH55AL	M12×1.75×13	158 000	LH55AL	M12×1.75×13	119 000	SH55AL	M12×1.75×13	113 00
NH55AN	M12×1.75×18	158 000	LH55AN	M12×1.75×18	119 000	SH55AN	M12×1.75×18	113 00
NH55BL	M12×1.75×13	193 000	LH55BL	M12×1.75×13	146 000	SH55BL	M12×1.75×13	140 00
VH55BN	M12×1.75×18	193 000	LH55BN	M12×1.75×18	146 000	SH55BN	M12×1.75×18	140 00
	1011201.73010	.00 000	LH55EL	M14×2×28	140 000	SH55EL	M14×2×28	140 00
VH55EM	M14×2×18 <12.5>	158 000	LH55EM		119 000	SH55EM		113 00
INIJCCUN	W114XZX10 <12.5>	156 000	LH55EIVI	M14×2×18 <12.5> 14×18	119 000	SH55EIVI	M14×2×18 <12.5> 14×18	113 00
	M14-0-10 10 5	100.000	LH55GL	M14×2×28	140.000	SH55GL	M14×2×28	140.000
NH55GM	M14×2×18 <12.5>	193 000	LH55GM	M14×2×18 <12.5>	146 000	SH55GM	M14×2×18 <12.5>	140 00
		000.007	LH55HL	14×18	101.05	SH55HL	14×18	1
NH65AN	M16×2×20	239 000	LH65AN	M16×2×20	181 000	4		
NH65BN	M16×2×20	310 000	LH65BN	M16×2×20	235 000			
			LH65EL	M16×2×24				
NH65EM	M16×2×24 <14.6>	239 000	LH65EM	M16×2×24 <14.6>	181 000			
			LH65FL	16×24				
			LH65GL	M16×2×24				
						1		
NH65GM	M16×2×24 <14.6>	310 000	LH65GM	M16×2×24 <14.6>	235 000			

Notes: 1) Parenthesized	dimonsions are	for itomo	mada of	otoinloon	otool
Notes: 1) Parentnesized	dimensions are	tor items	made of	stainiess	steer

2) Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and is a vertical and constant load on the ball slide mounting surface.

	New Series				Forme	r series		
Model No.	Ball slide mounting hole dimension <i>M</i> ×pitch×ℓ < <i>Q</i> ₂ > [mm]	load rating C ₅₀ [N]	Model No.	Ball slide mounting hole dimension $M \times \text{pitch} \times \ell < Q_2 >$ $Q_1 \times \ell \text{ [mm]}$	Dynamic load rating <i>C</i> ⁵⁰ [N]	Model No.	Ball slide mounting hole dimension $M \times \text{pitch} \times \ell < Q_2 >$ $Q_1 \times \ell \text{ [mm]}$	Dynamic load rating <i>C</i> so [N]
NS15CL	M4×0.7×6	7 250	LS15CL	M4×0.7×6	5 400	SS15CL	M4×0.7×6	4 900
NS15AL	M4×0.7×6	11 200	LS15AL	M4×0.7×6	8 350	SS15AL	M4×0.7×6	7 900
NS15JM	M5×0.8×7 <4.4>	7 250	LS15JL LS15JM LS15KL	M5×0.8×8 M5×0.8×7 <4.4> 4.5×7	5 400	SS15JL SS15JM SS15KL	M5×0.8×8 M5×0.8×7 <4.4> 4.5×7	4 900
NS15EM	M5×0.8×7 <4.4>	11 200	LS15EL LS15EM LS15FL	M5×0.8×8 M5×0.8×7 <4.4> 4.5×7	8 350	SS15EL SS15EM SS15FL	M5×0.8×8 M5×0.8×7 <4.4> 4.5×7	7 900
NS20CL	M5×0.8×7	10 600	LS20CL	M5×0.8×7	7 900	SS20CL	M5×0.8×7	7 250
NS20AL	M5×0.8×7	15 600	LS20AL	M5×0.8×7	11 700	SS20AL	M5×0.8×7	11 100
NS20JM	M6×1×9(9.5) <5.3>	10 600	LS20JL LS20JM LS20KL	M6×1×10 M6×1×9(9.5) <5.3> 5.5×9(9.5)	7 900	SS20JL SS20JM SS20KL	M6×1×10 M6×1×9(9.5) <5.3> 5.5×9(9.5)	7 250
NS20EM	M6×1×9(9.5) <5.3>	15 600	LS20EL LS20EM LS20FL	M6×1×10 M6×1×9(9.5) <5.3> 5.5×9(9.5)	11 700	SS20EL SS20EM SS20FL	M6×1×10 M6×1×9(9.5) <5.3> 5.5×9(9.5)	11 100
NS25CL	M6×1×9	17 700	LS25CL	M6×1×9	12 700	SS25CL	M6×1×9	12 700
NS25AL	M6×1×9	26 1 00	LS25AL	M6×1×9	18 800	SS25AL	M6×1×9	17 900
NS25JM	M8×1.25×10(11.5) <6.8>	17 700	LS25JL LS25JM LS25KL	M8×1.25×12 M8×1.25×10(11.5) <6.8> 7×10(11.5)	12 700	SS25JL SS25JM SS25KL	M8×1.25×12 M8×1.25×10(11.5) <6.8> 7×10(11.5)	12 700
NS25EM	M8×1.25×10(11.5) <6.8>	26 100	LS25EL LS25EM LS25FL	M8×1.25×12 M8×1.25×10(11.5) <6.8> 7×10(11.5)	18 800	SS25EL SS25EM SS25FL	M8×1.25×12 M8×1.25×10(11.5) <6.8> 7×10(11.5)	17 900
NS30CL	M8×1.25×12	24 700	LS30CL	M8×1.25×12	18 700	SS30CL	M8×1.25×12	18 700
NS30AL	M8×1.25×12	38 000	LS30AL	M8×1.25×12	28 800	SS30AL	M8×1.25×12	27 300
NS30JM	M10×1.5×12(14.5) <8.6>	24 700	LS30JL LS30JM LS30KL	M10×1.5×18(15) M10×1.5×12(14.5) <8.6> 9×12(14.5)	18 700	SS30JL SS30JM SS30KL	M10×1.5×18(15) M10×1.5×12(14.5) <8.6> 9×12(14.5)	18 700
NS30EM	M10×1.5×12(14.5) <8.6>	38 000	LS30EL LS30EM LS30FL	M10×1.5×18(15) M10×1.5×12(14.5) <8.6> 9×12(14.5)	28 800	SS30EL SS30EM SS30FL	M10×1.5×18(15) M10×1.5×12(14.5) <8.6> 9×12(14.5)	27 300
NS35CL	M8×1.25×12	34 500	LS35CL	M8×1.25×12	26 000	SS35CL	M8×1.25×12	26 000
NS35AL	M8×1.25×12	52 500	LS35AL	M8×1.25×12	40 000	SS35AL	M8×1.25×12	38 000
NS35JM	M10×1.5×13(14.5) <8.6>	34 500	LS35JL LS35JM LS35KL	M10×1.5×20(15) M10×1.5×13(14.5) <8.6> 9×13(14.5)	26 000	SS35JL SS35JM SS35KL	M10×1.5×20(15) M10×1.5×13(14.5) <8.6> 9×13(14.5)	26 000
NS35EM	M10×1.5×13(14.5) <8.6>	52 500	LS35EL LS35EM LS35FL	M10×1.5×20(15) M10×1.5×13(14.5) <8.6> 9×13(14.5)	40 000	SS35EL SS35EM SS35FL	M10×1.5×20(15) M10×1.5×13(14.5) <8.6> 9×13(14.5)	38 000

Notes: 1) Parenthesized dimensions are for items made of stainless steel. 2) Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and is a vertical and constant load on the ball slide mounting surface.

In VH series, the slide types in flange shape are focused.

	After focused			Before focused	
Model No.	Ball slide mounting hole dimension $M \times pitch \times \ell < Q_2 > [mm]$	Dynamic load rating C ₅₀ [N]	Model No.	Ball slide mounting hole dimension M×pitch×ℓ Q₁×ℓ [mm]	Dynamic load rating C ₅₀ [N]
VH15EM	M5×0.8×7 <4.4>	14 200	VH15EL VH15FL	M5×0.8×8 4.5×7	10 800
VH15GM	M5×0.8×7 <4.4>	18 100	VH15GL VH15HL	M5×0.8×8 4.5×7	14 600
VH20EM	M6×1×9.5 <5.3>	23 700	VH20EL VH20FL	M6×1×10 6×9.5	17 400
VH20GM	M6×1×9.5 <5.3>	30 000	VH20GL VH20HL	M6×1×10 6×9.5	23 500
VH25EM	M8×1.25×10(11.5) <6.8>	33 500	VH25EL VH25FL	M8×1.25×16(12) 7×10(11.5)	25 600
VH25GM	M8×1.25×10(11.5) <6.8>	45 500	VH25GL VH25HL	M8×1.25×16(12) 7×10(11.5)	34 500
VH30EM	M10×1.5×12(14.5) <8.6>	47 000	VH30EL VH30FL	M10×1.5×18(15) 9×12(14.5)	35 500
VH30GM	M10×1.5×12(14.5) <8.6>	61 000	VH30GL VH30HL	M10×1.5×18(15) 9×12(14.5)	46 000
VH35EM	M10×1.5×13 <8.6>	62 500	VH35EL VH35FL	M10×1.5×20 9×13	47 500
VH35GM	M10×1.5×13 <8.6>	81 000	VH35GL VH35HL	M10×1.5×20 9×13	61 500
VH45EM	M12×1.75×15 <10.5>	107 000	VH45EL VH45FL	M12×1.75×24 11×15	81 000
VH45GM	M12×1.75×15 <10.5>	131 000	VH45GL VH45HL	M12×1.75×24 11×15	99 000
VH55EM	M14×2×18 <12.5>	158 000	VH55EL VH55FL	M14×2×28 14×18	119 000
VH55GM	M14×2×18 <12.5>	193 000	VH55GL VH55HL	M14×2×28 14×18	146 000

Notes: 1) Parenthesized dimensions are for items made of stainless steel. 2) Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and is a vertical and constant load on the ball slide mounting surface. A320

A-6 Other Linear Rolling Guide Products

A-6-1 Linear Rolling Bushing

1. Features

(1) Low friction

Low friction owes to its design: Balls come into point contacts with raceway surface: the balls smoothly re-circulate. There is very little stick slip.

(2) Low noise

Noise level is low due to the ball retainer which is made of a synthetic resin.

(3) High precision

Due to NSK's superb quality control, precision is guaranteed.

(4) Dust prevention

Series with seal is available. The seal has small friction, and is highly durable. Highly dustpreventive double-lip system has been adopted.

(5) Superb durability

The material of outer sleeve is vacuum degassed, highly pure, and is heat-treated with good expertise.

2. Models

There are three models

(1) Standard type LB (Fig. 1)

This model is the most commonly used, and is the only model that comes with a seal and in super precision grade.

Fig. 1 Standard type LB

(2) Adjustable clearance type LB-T (Fig. 2)

A part of the outer sleeve is cut open toward the axial direction. Used with a housing which can adjust inside diameter, it makes minute adjustment of the clearance between the linear shaft and the inscribed circle (an imaginary circle that connects the summit of the ball) of linear rolling bushing.

Fig. 2 Adjustable Clearance type LB-T

(3) Open type LB-K (Fig. 3)

A cut is made in the outer sleeve and retainer, to a width equivalent to one row of the retainer, to the axial direction. The opening is used to hold this linear rolling bushing by a support or base to prevent a long linear shaft from bending.

Fig. 3 Open type LB-K

(1) Accuracy grades

- Space adjustment type LB-T······ Open type LB-K
 High precision grade S is available.

(2) Tolerance of rolling linear bushing, linear shaft and housing

Table 1 Tolerance for inscribed circle of the linear rolling bushing and shaft diameter Unit: µm

												-	- F
	limension/		ce/inscribe	ed circle di	ameter*1	Toleranc	e/width B	Tolerance/slot distance of retaining rings Bn		Recommended tolerance/ shaft diameter			
	cle diameter neter (mm)	High pr grac		Super hig grad			sion grade S ecision grade SP	High precision grade S Super high precision grade SP		High pr grac			h precision le SP
over	or less	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower
2.5	6									-6	-14	-4	-9
6	10	0	-8	0	-5					-6	-15	-4	-10
10	18					0	-120	+240	-240	-6	-17	-4	-12
18	30	0	-10	0	-6					-6	-19	-4	-13
30	50	0	-12	0	-8					-7	-23	-5	-16

Table 2 Tolerance of linear rolling bush outside diameter, and housing inside diameter

				j .		,		5		Unit: µm		
Nominal d	limension/	Tole	rance/outsi	de diamete	r D*1	Eccentricity*2	To	olerance/ho	/housing inside diameter			
	eter/housing neter (mm)	High pr grad	ecision le S	Super high grad		Super high precision grade SP		ecision de S	Super high grad			
over	or less	upper	lower	upper	lower	Maximum	upper	lower	upper	lower		
2.5	6						+12	0	+8	0		
6	10	0	-10	0	-7	8	+15	0	+9	0		
10	18						+18	0	+11	0		
18	30	0	-12	0	-8	9	+21	0	+13	0		
30	50	0	-14	0	-9	10	+25	0	+16	0		

*1) For adjustable clearance type and open type, figures indicate tolerances before the cut is made.

*2) Eccentricity means the run-out of offset between the centers of outer sleeve diameter and inscribed circle diameter.

4. Composition of Reference Number

NSK

5. Lubrication and Friction

(1) Grease lubrication

1 Supply at initial stage

At time of delivery, the linear rolling bushing has a coat of rust preventive agent. Wipe it off with clean kerosene or organic solvent. Dry with an air blower, etc., then apply grease.

Lithium soap based greases with consistency level of 2 are generally used (e.g. NSK Grease LR3, PS2, and AS2).

2 Replenishment

- Sealed linear rolling bushing is designed to be a disposal item. Therefore, a replenishing grease is considered to be not required. However, if replenishment becomes necessary due to dirty environment or wear of the seal, remove the linear bushing from the shaft and replenish lubricant in the same manner as the initial lubricating.
- For items without seal, wipe off old grease from the linear shaft, and apply new grease.
- Intervals of replenishments are every 100 km in a dirty environment, 500 km in a slightly dirty environment, 1 000 km or no replenishing for a normal environment.

(2) Oil lubrication

It is not necessary to wash off the rust preventive agent applied before delivery.

Use an oil of ISO viscosity grade VG15-100. Drip the oil on the linear shaft by an oil supply system.

Temperature to use

-30°C to 50°C Viscosity VG15 - 46 50°C to 80°C Viscosity VG46 - 100

Lubricant is removed by the seal if the linear ball bearing has a seal. Therefore, the drip method cannot be used except for single-seal types.

(3) Friction coefficient

The linear rolling bushing has a small dynamic friction coefficient. This contributes to low power loss and temperature rise.

According to **Fig. 4**, dynamic friction coefficient is merely 0.001-0.004. Also, at the speed of under 60 m/min, there is no danger of the temperature rising. Friction force can be obtained by the following formula.

 $F = \mu \bullet P \cdots (1)$ In this formula:

- F: Friction force (N)
- P : Load (vertical load to the shaft center line) (N) μ : Friction coefficient (dynamic or static)

For a seal type, a seal resistance of 0.3 to 2.40 $\ensuremath{\mathsf{N}}$ is added to the above.

Fig. 4 Dynamic friction coefficient of linear rolling bushing

6. Range of Conditions to Use

Generally, use under the following conditions. Please consult NSK when values exceed the ranges given below.

Temperature: – 30°C to 80°C Speed: Up to 120 m/min (excluding oscillation and short strokes)

7. Preload and Rigidity

The linear rolling bushing is normally used without applying preload. If high positioning accuracy is required, set the clearance between the linear rolling bush and the shaft at the range of 0 to 5 μ m. Slight preload is a general rule (1% of basic dynamic load rating *C* -- see the dimension table).

The dimension table shows theoretical rigidity K when clearance with the shaft is zero, and a load of 0.1 C is applied to the summit of the ball.

Rigidity K_N , when load is not 0.1C, is obtained by the following formula.

 $K_{\rm N} = K (P/0.1{\rm C})^{1/3}$ (2) In this formula:

K: Rigidity value in the dimension table (N/µm) P: Radial load (N)

When the load is applied between the ball raws, the load becomes 1.122 times for 4 ball rows; 0.959 times for 5 ball rows; 0.98 times for 6 ball rows.

8. Basic Load Rating and Rated Life

(1) Basic dynamic load rating

Basic dynamic load rating C is: A radial load which allows 90% of a group of linear rolling bush to run a distance of 50 km without suffering damage when they are moved individually. There is a relationship as below between C and the

 $L = 50 \ f_{L^3} \dots (3)$ $f_L = C/P \dots (4)$

In this formula:

life

- L : Rated life (km)
- P: Radial load (N)
- f_{L} : Life factor (Refer to Fig. 5)

```
This formula is used provided that the shaft hardness
is HRC58 or higher. Rated life is shorter if the shaft is
softer. In this case, find the hardness factor f_{\text{H}} from
Fig. 6, and multiply the value.
```

```
f_{L} = C \cdot f_{H}/P (5)
Or
```

```
C = P \cdot f_{\rm L}/f_{\rm H} \dots (6)
```

Life in time can be obtained by the following formula, substituting for given stroke length, cycle numbers, and running distance:

 $L_{\rm h} = (L/1.2 \cdot S \cdot n) \times 10^4 \cdots (7)$

In this formula:

 L_h : Life hours (h)

L : Rated life (km)

S : Stroke (mm)

n : Cycles per minute (cpm)

Fig. 5 Relationship between life factor and running distance

Fig. 6 Hardness factor

(2) Basic static load rating

It is a load that the total permanent deformation of outer sleeve, ball and shaft at the contact point, becomes 0.01% of the ball diameter when this load is applied to the rolling bushing. It is understood in general that this is the applicable load limit which causes this much permanent deformation without hampering operation.

(3) Calculation example

What is the appropriate rolling bushing size if required life is 5 000 hours?

Conditions are:

- · Three linear rolling bushings are installed in two parallel shafts, and support a reciprocating table.
- · Load 450 N is equally distributed to the three bushinas.
- · The table is required to reciprocate on the shafts at 200 times per minute at a stroke of 70 mm.
- Hardness of the shaft: HRC 55

450/3 = 150 (N)

Load per linear rolling bushing is:

From Formula (7), the required life when indicated in distance is:

$L = 5 \times 10^{3} \times 1.2 \times 70 \times 200/10^{4} = 8.4 \times 10^{3}$ (km)

Α

From Fig. 5 and Fig. 6, Life factor $f_{\perp} = 5.6$ Hardness factor $f_{\rm H} = 0.65$ Therefore, from Formula (6),

 $C = P \times f_{\perp} / f_{\rm H}$

 $=150 \times 5.6 / 0.65 = 1292$ (N)

Based on the above, select linear rolling bushing LB30NY with shaft diameter of 30 mm, basic dynamic load rating of 1 400 N.

(4) Compensating load rating by ball row position

Load rating of the linear rolling bushing changes by the position of the ball circuit rows.

Permissible load is larger when it is applied to the middle of the ball circuit rows than when it is applied directly above the ball row (Fig. 7).

(Radial clearance set at zero in this case.)

Load ratings in the dimension table are in case "A" when it is applied directly above the ball circuit row. If used as in case "B," the load rating becomes larger (refer to Fig. 7).

Harden the shaft surface where the balls run with heat treatment to provide the following values. Surface hardness: HRC58 or over

 Depth of core hardness at HRC50 or higher Depth for LB3; 0.3 mm or deeper Depth for LB50; 1.2 mm or deeper

Roughness of the surface should be:

· For SP grade, and "the clearance for fit" with the ball bushing less than 5 µm -

Less than 0.8 S

· For SP grade with "the clearance" of more than 5 µm, and for S grade -

Less than 1.2 S

Bending should be:

- LB3 -- 15 μm/100 mm
- LB50 -- 100 µm/1 000 mm

An appropriate clearance for normal use conditions can be obtained when the tolerance in shaft diameter remains within the recommended range (refer to Table 1 on page A322). For operations which require particular accuracy, select the shaft diameter which creates a clearance in the range of 0 to 0.005 (mm) for example, when assembled with the rolling bushing.

10. Dust Proof

Select a linear rolling bushing with seals to prevent moisture or foreign matters which are floating in the air from entering.

11. Installation

(1) Combination of shaft and linear rolling bushing

When the linear rolling bushing is installed in a linear motion table for its reciprocating movement, it is necessary to prevent the table from rotating. In general, for this reason, two shafts installed with two linear rolling bushings on each are used. Fig. 8 is an installation example.

Fig. 8 Installation example

(2) Installation of linear rolling bushing 1) Standard type installation

Fig. 9 shows a method using a retainer ring. Linear rolling bushing can also be secured to the housing using a stop plate and/or screw.

Retaining ring method (1)

Retaining ring method (2)

Fig. 9 Installation using retaining rings

- a) Housing inside diameter should be of a recommended value (Table 2, page A322). The entire rolling bushing contracts and gives excessive preload if: the inside diameter is small; the roundness or cylindricity is excessive. This may result in an unexpected failure.
- b) To install linear rolling bushing, use a tool (Fig. 10) and squeeze it in, or use a holder and lightly pound it.

R

Fig. 7 Increasing rate of load rating by position of ball row (B/A)

Section A-A

	Inscribed	Outside	Length	Retai	ning ring g	roove	Stiffness*1	Number	Weight	Basic dynamic	Basic static
Model No.	circle	diameter	, i i i i i i i i i i i i i i i i i i i	Distance	Width	Bottom		of ball	(kg)	load rating	load rating
	diameter					diameter	(N/µm)	circuit	(Reference only)	С	C_{\circ}
	Fw	D	В	Bn	т	Dn				(N)	(N)
LB3Y	3	7	10	—	—	—	3	4	0.0016	20	39
LB4Y	4	8	12	—	_	—	4.5	4	0.0022	29	59
LB6NY	6	12	19	11	1.15	11.5	7	4	0.0074	74	147
LB8ANY*2	8	15	17	9	1.15	14.3	5.5	4	0.0094	78	118
LB8NY	8	15	24	15	1.15	14.3	9.5	4	0.014	118	226
LB10NY	10	19	29	19	1.35	18	12	4	0.025	206	355
LB12NY	12	21	30	20	1.35	20	13	4	0.028	265	500
LB13NY	13	23	32	20	1.35	22	13	4	0.040	294	510
LB16NY	16	28	37	23	1.65	26.6	14	4	0.063	440	635
LB20NY	20	32	42	27	1.65	30.3	19	5	0.088	610	1 010
LB25NY	25	40	59	37	1.9	38	35	6	0.267	1 000	1 960
LB30NY	30	45	64	40	1.9	42.5	41	6	0.305	1 400	2 500
LB35NY	35	52	70	45	2.2	49	48	6	0.440	1 510	2 800
LB40NY	40	60	80	56	2.2	57	54	6	0.520	2 230	4 000
LB50NY	50	80	100	68	2.7	76.5	69	6	1.770	4 100	7 100

*1): Refer to Section (7).

12. Dimension tables

Model LB (standard type), no seal

*2): Semi-standard item of which length B is shorter than standard.

3) Installation of open type

Use with clearance or with light preload. Keep the tolerance in shaft diameter within the recommended range (refer to **Table 1** on page A322), so the preload shall not become excessive. (Unlike the adjustable clearance type, clearance

cannot be narrowed by rotating the shaft because the state of shaft rotation does not indicate how narrow the space has become. Narrowing clearance requires caution for open type.)

Fig. 11 Installation example of an open type

(3) Precaution for installing a shaft in the linear rolling bushing

- To install two shafts parallel to each other, first install one shaft accurately. Use this as a reference, and install the other parallel to the first shaft. This makes installation easy.
- Do not incline the shaft when inserting it into the linear rolling bushing. Do not force it to enter by twisting. This deforms the retainer, and causes the balls to fall out.
- Do not use the shaft for rotating movement after inserting the shaft to the linear rolling bushing. The balls slip and damage the shaft.
- Do not twist the shaft after it is inserted to the linear rolling bushing. The pressure scars the shaft.

D - 0.3

- 0.3

Fig. 10 Tool to install a linear rolling bushing

2) Installation of adjustable clearance type

Use a housing which can adjust the inside diameter of the rolling bushing. This way, the clearance between the rolling bushing and the linear shaft can be easily adjusted. Arrange the cut-open section of the rolling bushing at a 90-degree angle to the housing's cutopen section. This is the most effective way to evenly distribute deformation toward circumferential direction.

The tolerance of shaft diameter of the adjustable clearance type should be within the recommended range (refer to **Table 1** on page A322). As a general rule, set the preload at slight or light volume. (Do not provide excessive preload.) Use a dial gauge to measure and adjust clearance. However, here is an easy method to adjust.

First, loosen the housing until shaft turns freely. Then narrow the clearance gradually. Stop at the point when the shaft rotation becomes heavy. This creates a clearance zero or light preload. Unit: mm

Model LB-T (Adjustable clearance type)

Model LB (standard type), with seal

										Unit: mm
*Model No.	Inscribed circle	Outside diameter	Length	Reta Distance	ining ring g Width	roove Bottom	Number of ball	Weight (kg)	Basic dynamic load rating	Basic static load rating
	diameter	_	_			diameter	circuit	(Reference only)	-	C_0
	Fw	D	В	Bn	т	Dn			(N)	(N)
LB6NYDD	6	12	19	11	1.15	11.5	4	0.0074	74	147
LB8ANYDD	8	15	17	9	1.15	14.3	4	0.0094	78	118
LB8NYDD	8	15	24	15	1.15	14.3	4	0.014	118	226
LB10NYDD	10	19	29	19	1.35	18	4	0.025	206	355
LB12NYDD	12	21	30	20	1.35	20	4	0.028	265	500
LB13NYDD	13	23	32	20	1.35	22	4	0.040	294	510
LB16NYDD	16	28	37	23	1.65	26.6	4	0.063	440	635
LB20NYDD	20	32	42	27	1.65	30.3	5	0.088	610	1 010
LB25NYDD	25	40	59	37	1.9	38	6	0.267	1 000	1 960
LB30NYDD	30	45	64	40	1.9	42.5	6	0.305	1 400	2 500
LB35NYDD	35	52	70	45	2.2	49	6	0.440	1 510	2 800
LB40NYDD	40	60	80	56	2.2	57	6	0.520	2 230	4 000
LB50NYDD	50	80	100	68	2.7	76.5	6	1.770	4 100	7 100

*) Single-seal type is indicated as LB-D.

	B	2	
	$B_n \xrightarrow{m}$		
_			φD
	Section 4.4		

Section A-A

											Unit: mm
	Inscribed	Outside	Length	Opening	Retai	ning ring g	roove	Number	Weight	Basic dynamic	Basic static
Model No.	circle	diameter		width	Distance	Width	Bottom	of ball	(kg)	load rating	load rating
	diameter <i>F</i>	D	В	Е	Bn	т	diameter <i>D</i> n	circuit	(Reference only)	C (N)	<i>C</i> ₀ (N)
LB6NTY	6	12	19	0.8	11	1.15	11.5	4	0.0073	74	147
LB8ANTY	8	15	17	1	9	1.15	14.3	4	0.0093	78	118
LB8NTY	8	15	24	1	15	1.15	14.3	4	0.014	118	226
LB10NTY	10	19	29	1.5	19	1.35	18	4	0.025	206	355
LB12NTY	12	21	30	1.5	20	1.35	20	4	0.028	265	500
LB13NTY	13	23	32	1.5	20	1.35	22	4	0.040	294	510
LB16NTY	16	28	37	1.5	23	1.65	26.6	4	0.062	440	635
LB20NTY	20	32	42	2	27	1.65	30.3	5	0.087	610	1 010
LB25NTY	25	40	59	2	37	1.9	38	6	0.265	1 000	1 960
LB30NTY	30	45	64	2	40	1.9	42.5	6	0.302	1 400	2 500
LB35NTY	35	52	70	3	45	2.2	49	6	0.44	1 510	2 800
LB40NTY	40	60	80	3	56	2.2	57	6	0.52	2 230	4 000
LB50NTY	50	80	100	3	68	2.7	76.5	6	1.75	4 100	7 100

Model LB-K (Open type)

													Unit: mm
		Inscribed	Outside	Length	Opening	Opening	Reta	ining ring	groove	Number	Weight	Basic dynamic	Basic static
	Model No.	circle	diameter		width	angle	Distance	Width	Bottom	of ball	(kg)	load rating	load rating
		diameter							diameter	circuit	(Reference	С	C_{\circ}
		Fw	D	В	E1	θ	Bn	т	Dn		only)	(N)	(N)
1	LB20NKY	20	32	42	11	60°	27	1.65	30.3	4	0.072	610	1 010
	LB25NKY	25	40	59	13	50°	37	1.9	38	5	0.220	1 000	1 960
	LB30NKY	30	45	64	15	50°	40	1.9	42.5	5	0.260	1 400	2 500
	LB35NKY	35	52	70	17	50°	45	2.2	49	5	0.370	1 510	2 800
	LB40NKY	40	60	80	20	50°	56	2.2	57	5	0.440	2 230	4 000
	LB50NKY	50	80	100	25	50°	68	2.7	76.5	5	1.480	4 100	7 100

A-6-2 Crossed Roller Guide

1. Structure

Rollers with a retainer (hereinafter referred to as "retainer") are assembled in a pair of rails which have a V-shape groove. (The grooves form a 90degree angle. Refer to Figs. 1, 2.) Rollers are placed crisscrossed, and are able to support load in all directions, including moment loads.

Fig. 1 Structure of crossed roller guide

Fig. 2 Cross section of a crossed roller guide

2. Features

(1) High rigidity

This is attributable to the long contact area between the rollers and their accurately ground rolling surface.

(2) Superbly smooth movement, low noise

The window which directly embraces the roller is made of plastic for smooth and quiet operation, lowering clatter when the retainer and the rollers come into contact.

(3) Less micro-slip

Occasionally, a minute continuous slippage of the retainer to one direction, called "micro-slip," is caused due to installation error of the rail. After years of testing and research, NSK developed technology to minimize this.

(4) Easy installation

Installation is easy because the rail bending is

minimal, and the bolt hole pitch for installation is precise.

(5) Long durability

5) Long durability The material is vacuum-degassed and highly pure, and is hardened by carburized heat treatment for g superb resistance to wear and fatigue.

3. Accuracy

Accuracy grade P5 super precision and high precision grade P6 are available.

Fig. 3 shows parallelism of the roller's rolling surface to the mounting datum surface.

Fig. 3 Parallelism of the roller rolling surface

4. Rigidity

The number of the load rollers changes by the direction of the load. This is because the rollers are positioned crisscross.

That is, in case of Fig. 4:

The number of load rollers = $1/2 \times \text{total roller number}$

In case of Fig. 5:

The number of load rollers = Total roller number

```
.....(2)
```

.....(1)

Fig. 6 shows changes in elastic deformation when there are 20 load rollers. If the total number of rollers is other than 20, use the graph in Fig. 7. Obtain the compensation factor which converts the elastic deformation value at time of 20 load rollers into the value when a specific number of rollers are loaded. That is, obtain a compensation factor on the ordinate that correspond to the number of load rollers on the abscissa. Then, multiply this factor by the elastic deformation value (on ordinates) which corresponds to the load (on abscissa) shown in Fig. 6.

A331

Linder

[Calculation example: Elastic deformation]

A retainer which contains 30 rollers (roller diameter 6 mm) is installed on both right and left side (**Fig.** 8). How large is the elastic deformation of the crossed roller guide when a load of 4 kN is applied to the table center?

[Answer]

A load of 2 kN is applied to each side of the crossed roller guide. The elastic deformation value on the ordinate which corresponds to the load 2 kN on the abscissa (in **Fig. 6**) is:

4.5 µm

1.3

This application of load is the same as in **Fig. 4**. Therefore, the number of load rollers is one-half of 30, or 15. From **Fig. 7**, the compensation factor on the ordinate which corresponds to 15 rollers on abscissa is:

Multiply 1.3 by 4.5 μm obtained above. The answer is:

Fig. 6 Elastic deformation with 20 rollers

Fig. 7 Compensation factor to obtain elastic deformation

Fig. 8 Example calculation of elastic deformation (illustration)

5. Friction Force

If installation and lubrication are appropriate, the starting friction coefficient is markedly small as shown below:

μ = 0.005

6. Lengths of Rail and Retainer

The relationship of rail length L with stroke S is as follows:

When $S \le 400 \text{ mm}$, $L \ge 1.5S \cdots (3)$ When S > 400 mm, $L \ge S \cdots (4)$ Since the retainer travels a distance of half of the stroke, the retainer length K is:

 $K < L - \frac{S}{2}$ (5) The retainer does not detach from the rail when condition in Formula (5) is satisfied (Refer to **Fig. 9**).

Fig. 9 Relationship of rail and retainer

7. Lubrication and Dust Proof

For grease lubrication, lithium soap based greases of consistency 1 or 2 are used.

For example; NSK Grease LR 3, NSK Grease PS 2,

NSK Grease AS 2

For oil lubrication, JIS viscosity 32 to 150 is recommended.

When necessary, install a bellows on the rail, or install a seal on the side of the rail to arrest foreign matters and dust as shown in Fig. 10.

Fig. 10 Dust prevention (example)

Fig. 11 shows the standard installation procedures.

- (1) Secure Rail 1 and 2 to the machine base using the fixing bolts. Secure Rail 3 to the table with the bolts. Temporarily secure Rail 4 and loosen the side bolt.
- (2) Match the machine base and the table. Insert the retainer in the roller space. At this time, measure the distance from the rail end to the retainer end with a depth gauge to determine its position. If the roller space is too narrow and the retainer does not go inside, slide Rail 4 toward the side bolt, then insert the retainer.
- (3) Follow the reading of dial gauge which is previously set, and squeeze in all side bolts until they stop rattling. Do not apply excessive force. When the side bolts are tightened, the rollers should be in the vicinity of the bolt position. Then, secure Rail 4 with the fixing bolts. Finally, install a stopper to the rail end.

[Regarding preload]

As crossed roller guide has higher rigidity than other linear rolling guides, it does not need preload. It is also difficult to apply preload accurately. Crossed roller guide is usually used without clearance. For highly accurate applications, it is desirable to press the crossed roller guide by means of a bolt over the gib as shown in **Fig. 12**.

Fig. 12 Tightening using a gib

9. Basic Static Load Rating

Basic static load rating becomes larger in proportion to the number of the load rollers "n." Obtain basic static load rating per roller C_{01} . Then the basic static load rating C_{0n} , when the number of rollers is n, can be obtained as follows.

 $C_{0n} = n \times C_{01}$ (6) Values of C_{01} are shown in the dimension table.

10. Basic Dynamic Load Rating and Rated Life

Basic static load rating is based on a rated traveled distance of 50 km. The dimension table shows the value with 20 load rollers. When the number of load rollers is other than 20, a basic dynamic load rating C_n can be obtained by multiplying a compensation factor (obtained from **Fig. 13**.) by C in the dimension table.

(Suffix 'n' is to refer the number of load rollers.) As an example; Number of load rollers: n = 15. The compensation factor from **Fig. 13** is 0.8.

 $C_{^{15}} = 0.8 imes C$

Therefore, C_{15} is obtained from the following formula. Rated life (km) is shown in the formula below. In this formula:

 f_w : Load factor. 1.0 to 1.2 under smooth operation

 F_{\circ} : Computed load which applies to the guide (kN) Please refer to NSK Linear Guide Technical Description for details.

Fig. 13 Compensation factor for basic dynamic load rating

11. Reference Number and Standard Set for "One-Axis"

Specifications are indicated as a reference number as shown below.

Notes : 1) Semi-standard T, a shape of rail cross section, is available only for CRG04. It is lower in H dimension, and wider in W dimension compared with A.

 Standard set for "one axis" of the guide refers to 4 rails and 2 retainers which usually comprise the guide way for one axis.

Roller Pack

Photo 1 Roller pack

Fig. 2 Fitting plate

Fig. 3 Wedge block

12. Dimension Table

Crossed roller guide: Model CRG

																			Unit:	mm
Model No.	Dw	w	Н	w	С	Е	d	h	dı	d₂	М	G	F	t	Ρ	<i>P</i> 1	Dynamic load rating <i>C</i> when rollers are 20 (N)	Static load rating Con when roller is one (N)		L Super high pre cision P6
CRG04A	4	24	12	11.3	0.5	5	8	4.2	4.3	5	M 5×0.8	20	40	2.3	6.5	3.8	9 800	665	200	300
CRG04T	4	26	10	12.3	0.5	5	8	4.2	4.3	5	M 5×0.8	12/15	38/40	2.3	6.5	3.8	9 800	665	200	300
CRG06A	6	31	15	14.5	0.8	6	9.5	5.2	5.2	5.5	M 6×1	25	50	3.2	9.5	5.8	26 700	1 510	400	600
CRG09A	9	44	22	20.7	1	9	11	6.2	6.8	7	M 8×1.25	50	100	4	14	8	72 500	3 400	600	900
CRG12A	12	58	28	27.6	1.5	12	14	8.2	8.5	9	M10×1.5	50	100	5	20	12	130 000	6 050	900	1 200

Note: The area which embraces the roller is plastic for the standard retainer. A solid type made of steel plate is available for high temperature resistance.

A-6-3 Roller Pack

1. Structure

A roller pack comprises a main body which supports load from the guide way block via two rows of rollers; an end cap which changes the direction of the recirculation of rollers at the end of the main body; a side plate which guides the rollers (Fig. 1). Roller pack is one of the linear rolling guides, where rollers are allowed to re-circulate infinitely.

There is a plate spring attached to a side of roller pack to prevent roller pack from falling out when it is turned upside down after assembly.

Other component of the roller pack is spring pin. Spring pin is on the top surface of the roller pack, and makes installation of wedge block and fitting plate easier.

Wedge block is a unit to provide preload (Fig. 3) to roller pack; a fitting plate (Fig. 2), functioning like a pivot, adjusts misalignment of roller pack automatically. Wedge of wedge block moves up and down to apply preload by turning the adjust screw.

Fig. 1 Roller pack

Photo 2 Wedge block

A337

2. Features

Roller pack has two remarkable characteristics other linear roller guide bearings do not have.

(1) No roller skewing

If the roller is long relative to its diameter, the roller inclines during operation. This phenomenon is called skewing. Skewing causes problems such as sudden rise in friction force. However, a short roller lacks large load carrying capacity. The roller introduced here solved the skewing problem, yet has a large load carrying capacity:

short rollers are combined into double rows.

(2) Load is applied equally.

This is due to a "fitting plate," a result of "changed way of conceiving." Installation is quite easy: Merely place the fitting plate through the two holes to spring pins. The stop pins are inserted to holes on the top surface of the roller pack. The contact area between the fitting plate and the main body is made small. This way, the self-alignment is automatically accomplished by elastic contact of both parts.

This distributes an equal load to the rollers, far extending the life, compared to conventional roller linear guides.

Other characteristics include: Easy to provide preload by the wedge block; can be installed to vertical shaft; and reduction in noise level.

3. Accuracy

The height tolerance of roller pack is 10 μ m. Roller packs are grouped into a size difference of every 2 μ m (corded by A to E) before delivery (**Table 1**).

Table 1 Height Classification

	Unit: µm
Category	Code
over or less +3 - +5 +1 - +3	A B
-1 – +1 -3 – -1	C D
-5 – -3	E

4. Rigidity

Fig. 4 shows the relationship between load and deformation. This includes deformation caused by contact between: the rollers and main body; the rollers and guide way surface; the main body and fitting plate.

Fig. 4 Elastic deformation of the roller pack

5. Preload

Fig. 5 shows conversions of tightening torque of the wedge block adjust screw into preload volume. Use a dial gauge for accurate measurement.

Fig. 5 Tightening torque of the adjust screw, and preload volume

6. Friction and Lubrication

(1) Lubricants and volume

Mineral oils are commonly used. Since roller pack is used under a relatively heavy load, the oil should, ideally, have high viscosity and provide a strong film. Select from JIS viscosity 32-150.

Criteria of oil supply per roller pack Q (cc/h) can be calculated by the following formula.

 $Q \ge S \times 1/4$ (1) In this formula, *S* (stroke) is shown in meters. The oil volume, when the stroke is 1 m, per roller pack is more than 0.25 (cc/h). It is more desirable to supply a small amount of oil at short intervals than supplying a large amount at one time. In case of grease lubrication, use a grease of consistency 2. Albania EP2 is widely used.

(2) Friction coefficient

Starting friction coefficient is significantly small at under 0.005.

(3) Seal

It is necessary to install a wiper seal to the guide way surface to prevent foreign matters (swarf from cutting, and other dust) from entering the roller pack to enjoy the full benefit of the designed life of it. The material of the seal should have strong resistance to oil and wear. Felt and synthetic rubber (acrylonitril butadiene rubber) are some of the suitable materials. **Fig. 6** shows a general method to install the seals.

Fig. 6 Installation of seal

7. Installation

(1) Installation and applying preload

As shown in **Fig. 7**, it is basic that a fitting plate is installed on the roller pack which receives load, and a wedge block is installed on the roller pack which receives no load, but is only used for preload. All components should be secured with a stop pin, facing toward the direction of movement. To cut costs for processing, it is recommended to divide the pocket (which contains roller pack) into some blocks and secure them with bolts (**Fig. 7**). Preload is provided by the wedge block. Estimate the actual load beforehand, so the preload shall not be lost when a load is applied. A load variation equivalent to up to two times of the preload volume can be absorbed in this case.

(Take into consideration the rated life in 8. in determining preload volume.)

(2) Accuracy of way block

The following is the ideal accuracy specification and installation accuracy of way block as a guide surface. Hardness by heat treatment

: More than HRC58 hardened depth 2 mm or more 8. Rated life

In this formula:

Rated life L (km) is shown in the following formula.

C: Basic dynamic load rating (N)

operation

pack

 $f_{\rm w}$: Load factors. 1.0 to 1.2 at time of smooth

Fc: Calculated load (N) applied to the roller

Surface roughness

: Less than 1.6 S Parallelism as a single unit: Less than 0.010 mm per meter

Parallelism after installation

: Less than 0.020 mm per meter Please consult NSK when using cast iron or cast steel quide face.

(3) Pocket accuracy

Accuracy of the pocket in which the roller pack is mounted should satisfy the following conditions. Pocket width

: Roller pack width + 0.10 to 0.20 mm Parallelism of the pocket side faces to the guide way face

: Less than 0.010 mm per 100 mm. Parallelism of the fitting plate (pocket bottom) mounting surface to the guide way face and parallelism of the wedge block mounting surface to the guide way surface :

: Less than 0.040 mm per 100 mm.

Fig. 7 Design of the roller pack pocket (example)

9. Disassembly

Remove the roller pack preloaded by the wedge block in the following manner.

- Loosen the adjust screw of the wedge block. Lightly tap the wedge. In case of light preload, the wedge loosens, and the roller pack can be pulled out.
- When pulling, put the bolt in the tap hole at the end of the end cap, and tug the bolt.
- In case of heavy load, the roller pack could not be pulled out by the above method. Hook a tool to the pull-out hole (Fig. 1) on the side plate of the roller pack, and pull out the roller pack.

10. Dimension Table

Roller pack: Model WRP

										Unit: mm
Model No	o.	Width W	Height ±0.005 <i>H</i>	Length L	Applicable fitting plate reference No.	Assembled height <i>H</i> 1	Applicable wedge reference No.	Assembled height <i>H</i> 2	Basic dynamic load rating <i>C</i> (N)	Basic static load rating <i>C</i> ₀ (N)
WRP 2519	007	25	19	65.5	WFT 25	24	WED 25	31 (30.4 – 31.6)	31 000	40 500
WRP 3126	609	31	26	85	WFT 31	31	WED 31	40 (39.4 – 40.6)	57 000	73 000
WRP 3833	810	38.1	33.31	104.4	WFT 38	38.91	WED 38	50.8 (50 – 51.5)	91 000	113 000
WRP 4540	014	45	40	138	WFT 45	45	WED 45	60 (59.2 – 60.8)	151 000	191 000

Note : Numbers in the parentheses in column H_2 show the adjustable height range of the wedge block.

Fitting plate: Model WFT

Model No.	Width W	Height (±0.01) <i>H</i>	Length L	Applicable roller pack
WFT 25	10	5	20	WRP 251907
WFT 31	12	5	26	WRP 312609
WFT 38	12.8	5.6	29	WRP 383310
WFT 45	16	5	40	WRP 454014

Wedge block: Model WED

Unit: mm

Model No.	Width W	Height H	Length L	Applicable roller pack		
WED 25	23	12 (11.5 – 12.5)	47	WRP 251907		
WED 31	28	14 (13.5 – 14.5)	63	WRP 312609		
WED 38	35	17.47 (16.9 – 18.1)	76	WRP 383310		
WED 45	40	20 (19.2 – 20.8)	95	WRP 454014		

Note : Numbers in the parentheses in column H_2 show adjustable height range of the wedge block.

Unit[,] mm

A-6-4 Linear Roller Bearings

1. Structure

Linear roller bearing comprises: A single row of rollers; the main body which supports load via rollers; the end cap which turns the roller recirculating direction at the end of the main body from the loaded zone to the unloaded zone; a retaining wire which prevents rollers from falling out (**Fig. 1**). The main body, as the cylindrical roller bearing, has a rib at both sides. The rib guides the rollers to travel correctly, and assists the rollers to circulate infinitely in the bearing in a stable manner. This contributes to the bearing's linear movement without the restriction of travel range.

NSK also developed a highly functional preload pad

End cap Main body Roller Retaining wire

Fig. 1 Linear roller bearing

Photo 1 Linear roller bearing

(Photo 2) to provide a slight preload to the bearing.

The preload pad basically comprises parallel plates

and sandwiched bellevile springs, having adjusted

Preloaded pad can be used in a machine tool in the

When two bearings are installed with one on the

top and the other under the way block (the bearings

comprise a set), a preloaded pad is used at the

bottom bearing. This provides an equal preload to

the top and bottom bearings. This way, to a certain

extent, the variation in the load and the uneven

thickness of the way block can be absorbed.

its spring rate.

following manner.

Photo 2 Preload pad

2. Features

In addition to the general features of a roller bearing guide such as no-stick slip, small friction resistance, and easy maintenance, the linear roller bearing has several more advantages.

(1) No trouble by roller skewing

Skewing is the inclination of the rollers during operation. It causes friction force to suddenly soar. Skewing is apt to occur when the roller is long relative to its diameter. The proportion of the length and diameter is 1:2 for the products in this series. This is superior to the commonly used 1:3 ratio.

(2) Highly reliable

Retaining the rollers without allowing them to fall out of the bearing is a crucial function of the linear guide bearing. The simple and highly effective retaining wire has solved the problem for this product series.

(3) Compact design

Despite the load carrying capacity, this series is smaller in size than any other models. This contributes to the application which requires compact design.

(4) High rigidity

The contact area between the bearing and the mounting surface is large to increase rigidity.

3. Accuracy

The nominal height difference between bearings is 10 μ m. The bearings are grouped into every 2 μ m, and are coded before delivery (**Table 1**).

Table 1 Classification of height

			Unit: µm
	Category		Code
over 0 -2 -4 -6 -8	- - -	or less -2 -4 -6 -8 -10	A B C D E

4. Rigidity

Fig. 2 shows elastic deformation.

5. Friction and Lubrication

(1) Lubricants and volume

Mineral oils are used in general. The linear roller bearing is used under relatively heavy load. An oil which has high viscosity and creates a strong oil film is ideal for linear roller guides. Select from JIS viscosity 32 to 150.

General oil supply for a linear roller bearing Q (cc/h) can be calculated by the following formula.

 $Q \ge S \times 1/4$(1) In this formula, *S* (stroke) is shown in meters. Therefore, when the stroke is 1 m, the volume of lubricant per roller bearing is more than 0.25 (cc/h). It is recommended to supply a small amount of oil at short intervals rather than supplying a large amount at one time. In case of grease lubrication, a grease of consistency degree 2, such as Albania EP2, is generally used.

(2) Friction coefficient

Starting friction coefficient is significantly small at under 0.005.

(3) Seal

Install a wiper seal on the way block surface to prevent foreign matters (cutting chip and other contaminant from entering) to realize a full life of the linear roller bearing. The material of the seal should have strong resistance against oil and wear. Felt and synthetic rubber (acrylonitril-butadien rubber) are some of the suitable materials.

8. Dimension Table

Linear roller bearing Model: LRB

Н

Model No.	Width W	Height <i>H</i> -8.010	Length L	L1	Roller diameter × length	Mounting bolt hole D	Bolt hole	distance B	Basic dynamic load rating <i>C</i> (N)	Basic static load rating <i>C</i> o (N)
LRB 14×53	26.5	14.29	52.8	32.8	¢ 4×8	3.4	19	19.3	15 400	21 900
LRB 19×69	30.5	19.05	68.6	44.6	φ 5×10	3.4	25.4	23.3	27 000	39 000
LRB 29×92	41.5	28.58	92.0	59	¢ 7.5×15	4.5	38.1	32.7	57 500	76 500
LRB 38×132	51.4	38.10	132.0	88	φ 10×20	5.5	50.8	41.5	119 000	159 000

Note: Bearings are grouped into heights of every 2 µm before delivery.

6. Installation

Secure the linear roller bearing using four bolts. The bearing main body has four holes for mounting.

Accuracy of way block

The ideal accuracy specification and mounting accuracy of a way block as a guide way surface are as follows.

Hardness by heat treatment : More than HRC58 hardened depth 2 mm or more Surface roughness : Less than 1.6 S Parallelism as a single unit : Less than 0.010 mm per 1 m Parallelism after installation : Less than 0.020 mm per 1 m Please consult NSK when using cast iron or cast steel guide way.

7. Rated life

Rated life L (km) is shown in the following formula. In this formula:

C : Basic dynamic load rating (N)

- $f_{\rm w}$: Load factor. 1.0 to 1.2 at time of smooth operation
- $F_{\rm c}$: Calculated load applied on the bearing (N)

Unit[,] mm

Preload pad Model: PRP

										Unit: mm
Model No.	Applicable linear roller bearing	Height (no-load) <i>h</i> max.	Compressed height <i>h</i> min.	h min. Load when fully compressed (N)	W	L	d	а	b	<i>s</i> Hex. Socket cap screw
PRP 14×53	LRB 14×53	10.23	9.53	1 570	26	72	4.5	62	14	M3×16
PRP 19×69	LRB 19×69	11.53	11.10	2 650	30	96	4.5	86	18	M3×19
PRP 29×92	LRB 29×92	13.13	12.70	6 450	41	120	4.5	110	27	M3×25
PRP 38×132	LRB 38×132	16.28	15.88	12 000	51	157	4.5	147	35	M5×38

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com